-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_st.py
165 lines (119 loc) · 5.24 KB
/
model_st.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch import Tensor
from typing import Tuple
from torchvision.models import resnet18, resnet50
from torchvision.models import ResNet18_Weights, ResNet50_Weights
import pretrainedmodels
import ssl
ssl._create_default_https_context = ssl._create_unverified_context # for pretrainedmodels
class MKGE(nn.Module):
def __init__(self, args, num_ent_uid, target_list, device, all_locs=None, num_habitat=None, all_timestamps=None, all_loc_times=None):
super(MKGE, self).__init__()
self.args = args
self.num_ent_uid = num_ent_uid
self.ent_embedding = torch.nn.Embedding(self.num_ent_uid, args.embedding_dim, sparse=False)
if self.args.use_learned_loc_embed:
self.location_embedding = torch.nn.Embedding(len(all_locs), args.embedding_dim)
else:
self.location_embedding = MLP(args.location_input_dim, args.embedding_dim, args.mlp_location_numlayer)
self.time_embedding = MLP(args.time_input_dim, args.embedding_dim, args.mlp_time_numlayer)
# print(self.time_embedding)
# print(self.location_embedding)
if self.args.img_embed_model == 'resnet50':
self.image_embedding = resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
self.image_embedding.fc = nn.Linear(2048, args.embedding_dim)
elif self.args.img_embed_model == 'resnet18':
self.image_embedding = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
self.image_embedding.fc = nn.Linear(512, args.embedding_dim)
# self.image_embedding.fc = nn.Linear(512, 182)
else:
raise NotImplementedError
self.target_list = target_list
if all_locs is not None:
self.all_locs = all_locs.to(device)
if all_timestamps is not None:
self.all_timestamps = all_timestamps.to(device)
if all_loc_times is not None:
self.all_loc_times = all_loc_times.to(device)
#print(self.all_locs)
if self.args.add_inverse_rels:
num_relations = 4
else:
num_relations = 2
self.act = nn.PReLU()
self.mlp = nn.Linear(3*args.embedding_dim, args.embedding_dim)
self.layer_norm = nn.LayerNorm(3*args.embedding_dim)
self.classifier = nn.Linear(args.embedding_dim, len(self.target_list))
self.args = args
self.device = device
self.init()
def init(self):
nn.init.xavier_uniform_(self.ent_embedding.weight.data)
# nn.init.xavier_uniform_(self.rel_embedding.weight.data)
if self.args.img_embed_model in ['resnet18', 'resnet50']:
nn.init.xavier_uniform_(self.image_embedding.fc.weight.data)
if self.args.use_learned_loc_embed:
nn.init.xavier_uniform_(self.location_embedding.weight.data)
nn.init.xavier_uniform_(self.mlp.weight.data)
nn.init.xavier_uniform_(self.classifier.weight.data)
# @profile
def forward_ce(self, graph, image, time, location=None):
# create a graph using location and time attributes of the image
# print('graph.n_id = {}'.format(graph.n_id))
# node ids:
# <image>: 0
# T: 1
# L: 2
# edge ids:
# (<image>, T): 0
# (<image>, L): 1
# gather initial node embedding
batch_size = image.size(0)
img_embed = self.image_embedding(image)
# print('img_embed = {}'.format(img_embed))
time_emb = self.time_embedding(time)
if location is not None:
loc_emb = self.location_embedding(location)
if location is not None:
node_emb = torch.stack([img_embed, time_emb, loc_emb], dim=1) # [batch, n_nodes, hid_dim]
else:
node_emb = torch.stack([img_embed, time_emb], dim=1)
node_emb = node_emb.view(node_emb.size(0), -1)
node_emb = self.layer_norm(node_emb)
img_context_emb = self.mlp(node_emb)
img_context_emb = self.act(img_context_emb)
# project the embeddding using a linear layer to compute label distribution
score = self.classifier(img_context_emb)
# print('score = {}'.format(score.size()))
return score
class MLP(nn.Module):
def __init__(self,
input_dim,
output_dim,
num_layers=3,
p_dropout=0.0,
bias=True):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.p_dropout = p_dropout
step_size = (input_dim - output_dim) // num_layers
hidden_dims = [output_dim + (i * step_size)
for i in reversed(range(num_layers))]
mlp = list()
layer_indim = input_dim
for hidden_dim in hidden_dims:
mlp.extend([nn.Linear(layer_indim, hidden_dim, bias),
nn.Dropout(p=self.p_dropout, inplace=True),
nn.PReLU()])
layer_indim = hidden_dim
self.mlp = nn.Sequential(*mlp)
# initiate weights
self.init()
def forward(self, x):
return self.mlp(x)
def init(self):
for param in self.parameters():
nn.init.uniform_(param)