This repository has been archived by the owner on Aug 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathcalibration.py
executable file
·183 lines (157 loc) · 5.99 KB
/
calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 28 16:58:46 2017
@author: kaihong
"""
from __future__ import print_function
import numpy as np
import scipy
from optimizer import SolveGaussHelmertProblem
from numpy.random import randn
from pycppad import independent,adfun
def GenerateAutoDiffFunction(g, x0, l0):
dim_x = x0.shape[0]
a_var = independent(np.hstack([x0, l0]))
jacobian = adfun(a_var, g(a_var[:dim_x], a_var[dim_x:])).jacobian
def g_autodiff(x, l):
err = g(x, l)
J = jacobian(np.hstack([x, l]))
return err, J[:, :dim_x], J[:, dim_x:]
return g_autodiff
def Rot2ax(R):
"""Rotation matrix to angle-axis vector"""
tr = np.trace(R)
a = np.array( [R[2,1]-R[1,2], R[0,2]-R[2,0], R[1,0]-R[0,1]] )
an = np.linalg.norm(a)
phi= np.arctan2(an, tr-1)
if np.abs(phi) < 1e-12:
return np.zeros(3,'d')
else:
return phi/an*a
def skew(v):
return np.array([[ 0, -v[2], v[1]],
[ v[2], 0, -v[0]],
[-v[1], v[0], 0 ]])
def ax2Rot(r):
"""Angle-axis vector to rotation matrix"""
p = np.linalg.norm(r)
if np.abs(p) < 1e-12:
return np.eye(3)
else:
S = skew(r/p)
return np.eye(3) + np.sin(p)*S + (1.0-np.cos(p))*S.dot(S)
def MfromRT(r,t):
T = np.eye(4)
T[:3,:3] = ax2Rot(r)
T[:3, 3] = t
return T
def RTfromM(mat):
return Rot2ax(mat[:3,:3]), mat[:3,3]
#%%
def ExtrinsicCalibration3D(trajectories_list, trajectories_cov_list=None, *args):
""" Motion-base sensor calibration
Constrain equations:
( I3 - R(r_b) )*xi_b = t_b - R(eta_b)*t_a
and
R(eta_b)*r_a = r_b
Input
-----------
trajectories_list: list( list( 4x4 pose matrices ) )
Output
-----------
calibration result as a list of matrix
"""
num_pose_list = list(map(len, trajectories_list))
if len(set(num_pose_list))!=1:
raise ValueError("each trajectory should have the same number of poses")
num_pose = num_pose_list[0]
num_sensor = len(trajectories_list)
num_solution = num_sensor-1
print("Input: %d sensors, each has %d poses" % (num_sensor, num_pose))
'''Assemble observation matrix lm, each row l = [ra,ta, ..., rm, tm]'''
stacked_r_list = [ np.vstack( [ Rot2ax(pose_mat[:3,:3]) for pose_mat in trajectory] )
for trajectory in trajectories_list ]
stacked_t_list = [ np.vstack( [ pose_mat[:3, 3] for pose_mat in trajectory] )
for trajectory in trajectories_list ]
r_t_interleaved = map(np.hstack, zip(stacked_r_list, stacked_t_list))
lm = np.hstack( r_t_interleaved ) # lm.shape = (num_pose, 6*num_sensor)
'''Assemble covariance matrix '''
if trajectories_cov_list is None:
Cov_ll = np.tile(np.eye(6*num_sensor), (num_pose, 1, 1))
else:
Cov_ll = np.zeros((num_pose, 6*num_sensor, 6*num_sensor))
cov_list_time_majored = list(zip(*trajectories_cov_list)) # list[sensor_idx][pose_idx] -> list[pose_idx][sensor_idx]
for pose_idx in range(num_pose):
Cov_ll[pose_idx, :, :] = scipy.linalg.block_diag(*cov_list_time_majored[pose_idx])
'''Calculate close form solution as initial guess'''
x0_list = []
I3 = np.eye(3)
for s in range(1, num_sensor):
# rotation first
H = stacked_r_list[0].T.dot(stacked_r_list[s])
U, d, Vt = np.linalg.svd(H)
R = Vt.T.dot(U.T)
# then translation
A = np.vstack([ I3 - ax2Rot(r_) for r_ in stacked_r_list[s]])
b = np.hstack( stacked_t_list[s] - ( R.dot(stacked_t_list[0].T) ).T )
t = np.linalg.lstsq(A, b)[0]
x0_list.append([Rot2ax(R), t])
x0 = np.array(x0_list).flatten()
print('Initial guess:')
map(lambda rt: print(MfromRT(*rt)), x0_list)
'''Assemble constraint functions '''
def g(x, l):
x = np.reshape(x, (num_solution, 6))
l = np.reshape(l, (num_sensor, 6))
r,t = np.split(l, 2, axis=1)
e = []
for x_s, s in zip(x, range(1, num_sensor)):
Rq = ax2Rot(x_s[0:3])
Rs = ax2Rot(r[s])
e.append(x_s[3:] - Rs.dot(x_s[3:]) + Rq.dot(t[0]) - t[s]) # g1 constraints
e.append( Rq.dot(r[0]) - r[s] ) # full-constraints
return np.hstack(e)
g_diff = GenerateAutoDiffFunction(g, x0, lm[0,:])
'''solve'''
xnu, Cov_xx, sigma_0, vv, w = SolveGaussHelmertProblem(g_diff, x0, lm, Cov_ll, *args)
return [MfromRT(x[:3], x[3:]) for x in np.split(xnu, num_solution) ]
#%%
def demo_and_test():
def randsp(n=3):
v = np.random.uniform(-1, 1, size=n)
return v/np.linalg.norm(v)
''' ground truth transformation between sensors '''
num_sensor = 3
num_solution = num_sensor-1
x_true = np.array([randsp() for _ in range(num_solution*2) ]).ravel() # x= [r1,t1,...,rn,tn]
Hm = [MfromRT(x[:3], x[3:]) for x in np.split(x_true, num_solution)]
''' generate ground truth trajectories '''
num_pose = 500
dM = []
Hm_inv = [np.linalg.inv(h) for h in Hm]
for t in range(num_pose):
dm = [MfromRT(randsp(),randsp())] # base sensor
for h, h_inv in zip(Hm, Hm_inv): # other sensor
dm.append( h.dot(dm[0]).dot(h_inv) )
dM.append(dm)
trajectories_list = zip(*dM)
''' add measurement noise'''
sigma_r = 1e-3
sigma_t = 1e-2
noisy_trajectories = []
for trajectory in trajectories_list:
one_trajectory = []
for pose in trajectory:
r,t = RTfromM(pose)
new_pose = MfromRT( r+sigma_r*randn(3), t+sigma_t*randn(3))
one_trajectory.append(new_pose)
noisy_trajectories.append(one_trajectory)
trajectory_covs = [ [np.diag([sigma_r]*3 + [sigma_t]*3)**2] * num_pose ] * num_sensor
H_est = ExtrinsicCalibration3D(noisy_trajectories, trajectory_covs)
print("After refinement:")
list(map(print, H_est))
print("Ground truth:")
list(map(print, Hm))
if __name__ =='__main__':
demo_and_test()