forked from nanjingxiaobawang/SieNet-Image-extrapolation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_config.yaml
60 lines (49 loc) · 3.1 KB
/
model_config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
MODEL: 3 # 1: structure model, 2: inpaint model, 3: structure-inpaint model
VERBOSE: 1 # turns on verbose mode in the output console
GPU: [0] # gpu ids
MAX_ITERS: 8e6 # maximum number of iterations to train the model
LR: 0.0001 # learning rate
BETA1: 0 # adam optimizer beta1
BETA2: 0.999 # adam optimizer beta2
LR_POLICY: constant # the method to adjust learning rate (eg: constant|step)
STEP_SIZE: 100000 # Period of learning rate decay (only used when choosing "step" as the lr adjusment method)
GAMMA: 0.5 # Multiplicative factor of learning rate decay. (only used when choosing "step" as the lr adjusment method)
INIT_TYPE: xavier # initialization [gaussian/kaiming/xavier/orthogonal]
SAVE_INTERVAL: 1000 # how many iterations to wait before saving model
SAVE_LATEST: 1000 # how many iterations to wait before saving lastest model
SAMPLE_INTERVAL: 1000 # how many iterations to wait before sampling
SAMPLE_SIZE: 4 # number of images to sample
EVAL_INTERVAL: 2000 # how many iterations to wait before model evaluation
LOG_INTERVAL: 100 # how many iterations to wait before logging training status
WHICH_ITER: latest # which iterations to load
DIS_GAN_LOSS: lsgan # type of gan loss
STRUCTURE_L1: 4 # structure net parameter of l1 loss
STRUCTURE_ADV_GEN: 1 # structure net parameter of gan loss
FLOW_ADV_GEN: 1 # texture net parameter of gan loss
FLOW_L1: 5 # texture net parameter of l1 loss
FLOW_CORRECTNESS: 0.25 # texture net parameter of sampling correctness loss
VGG_STYLE: 250 # texture net parameter of vgg_style loss (Optional loss on stage_3)
VGG_CONTENT: 0.1 # texture net parameter of vgg_content loss (Optional loss on stage_3)
TRAIN_BATCH_SIZE: 8 # batch size
#DATA_TRAIN_SIZE: 256 # image size for training
DATA_TEST_SIZE: False # image size for testing (False for never resize)
DATA_FLIP: False # filp image or not when training
DATA_CROP: FALSE #[537,537] # crop size when training (False for never cro)
DATA_MASK_TYPE: from_file # mask type (random_bbox|random_free_form|from_file)
DATA_RANDOM_BBOX_SETTING: # parameters for random_bbox
random_size: False # random hole size according to shape [0.4*shape shape]
shape: [80, 80] # hole size
margin: [0, 0] # minimum distance from the image boundary
num: 3
DATA_RANDOM_FF_SETTING: # parameters for random_free_form
mv: 5
ma: 4.0
ml: 40
mbw: 10
DATA_MASK_FILE: ./txt/irregular_mask.list #parameters for from_file
# use places365 dataset
DATA_TRAIN_GT: ./txt/scenery_gt_train.list
DATA_TRAIN_STRUCTURE: ./txt/scenery_structure_train.list
DATA_VAL_GT: ./txt/scenery_gt_val.list
DATA_VAL_STRUCTURE: ./txt/scenery_structure_val.list
DATA_VAL_MASK: ./txt/scenery_mask_val.list