-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_preparation.py
164 lines (135 loc) · 6.16 KB
/
data_preparation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from scipy.spatial.distance import euclidean, cosine
import scipy
import numpy as np
import json
from pptx import Presentation
from nltk.corpus import stopwords
import nltk
from sklearn.feature_extraction.text import TfidfVectorizer
stop_words = set(stopwords.words('english'))
tokenizer = nltk.RegexpTokenizer('[a-zA-Z]\w+')
MIN_WORD_LENGTH = 4
MIN_VOCAB_COUNT = 2
INF = 1.7976931348623157e+308
def timed_grid_generator(vocab_list, dn, deck_no, grid_type, fixed_len):
slides_content = []
chunks_content = []
pptx_path = "./data/" + dn + "/" + str(deck_no) + "/slides.pptx"
yt_path = "./data/" + dn + "/" + str(deck_no) + "/transcript.json"
annotations = np.loadtxt("./data/" + dn + "/" + str(deck_no) + "/annotation.txt", dtype="str")
duration = int(annotations[0])
annotations = np.delete(annotations, [0])
slide_rel = {}
time_rel = {}
temp_time_rel = {}
temp_chunkcontent = []
yt_idx = 0
prs = Presentation(pptx_path)
for slide in prs.slides:
slide_content = []
for shape in slide.shapes:
if hasattr(shape, "text"):
word_tokens = tokenizer.tokenize(shape.text)
words_lower = [w.lower() for w in word_tokens]
words_in_vocab = [w for w in words_lower if w in vocab_list]
if len(words_in_vocab) > 0:
slide_content.extend(words_in_vocab)
if len(slide_content) > 0:
slide_rel[len(slides_content)] = prs.slides.index(slide) + 1
slides_content.append(slide_content)
else:
slide_rel[len(slides_content)] = prs.slides.index(slide) + 1
slides_content.append(['lolzthisisplaceholder'])
cell_duration = fixed_len
if grid_type != "fixed":
if grid_type == "pptx_len":
cell_duration = duration / len(prs.slides)
elif grid_type == "slide_len":
cell_duration = duration / len(slide_rel)
cell_start = 0.0
temp_cellcount = 0
while cell_start < (duration + cell_duration):
temp_time_rel[temp_cellcount] = (cell_start, cell_start + cell_duration)
cell_start += cell_duration
temp_cellcount += 1
# print(cell_duration, duration, len(temp_time_rel), len(slide_rel))
with open(yt_path) as yt_json_file:
data = json.load(yt_json_file)
cue_groups = data["actions"][0]["updateEngagementPanelAction"]["content"]["transcriptRenderer"]["body"][
"transcriptBodyRenderer"]["cueGroups"]
chunk_words = []
for cg in range(len(cue_groups)):
if "simpleText" in cue_groups[cg]["transcriptCueGroupRenderer"]["cues"][0]["transcriptCueRenderer"][
"cue"]:
simple_text = \
cue_groups[cg]["transcriptCueGroupRenderer"]["cues"][0]["transcriptCueRenderer"]["cue"][
"simpleText"]
else:
simple_text = ""
time_ms = int(
cue_groups[cg]["transcriptCueGroupRenderer"]["cues"][0]["transcriptCueRenderer"]["startOffsetMs"])
time_s = time_ms / 1000
word_tokens = tokenizer.tokenize(simple_text)
words_lower = [w.lower() for w in word_tokens]
words_in_vocab = [w for w in words_lower if w in vocab_list]
if cg == (len(cue_groups) - 1):
chunk_words.extend(words_in_vocab)
temp_chunkcontent.append(chunk_words)
elif time_s < temp_time_rel[yt_idx][1]:
chunk_words.extend(words_in_vocab)
else:
while time_s > temp_time_rel[yt_idx][1]:
temp_chunkcontent.append(chunk_words)
yt_idx += 1
chunk_words = []
chunk_words.extend(words_in_vocab)
if len(temp_chunkcontent) < len(temp_time_rel):
temp_chunkcontent.append([])
for i in range(len(temp_chunkcontent)):
if len(temp_chunkcontent[i]) > 0:
# print(i, len(temp_chunkcontent))
time_rel[len(chunks_content)] = temp_time_rel[i]
chunks_content.append(temp_chunkcontent[i])
else:
time_rel[len(chunks_content)] = temp_time_rel[i]
chunks_content.append(['lolzthisisplaceholder'])
gs_timings = dict()
for gs in range(len(annotations)):
gsa = annotations[gs].split("-")
if gsa[1] == '0' and gsa[2] == '0':
continue
gs_timings[int(gsa[0])] = (int(gsa[1]), int(gsa[2]))
return slides_content, chunks_content, slide_rel, time_rel, gs_timings
def get_vocabulary(dn, deck_no):
vocab_count = {}
pptx_path = "./data/" + dn + "/" + str(deck_no) + "/slides.pptx"
prs = Presentation(pptx_path)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
word_tokens = tokenizer.tokenize(shape.text)
filtered_tokens = [w.lower() for w in word_tokens if not w in stop_words]
words_extract = [w for w in filtered_tokens if len(w) > MIN_WORD_LENGTH]
for word in words_extract:
if word in vocab_count:
vocab_count[word] += 1
else:
vocab_count[word] = 1
return vocab_count
def or_time_grid_terms(startIndex, endIndex, grid_type="fixed", fixed_len=15):
vocab_count = get_vocabulary(startIndex, endIndex)
vocab_final = {key:val for key, val in vocab_count.items() if val > MIN_VOCAB_COUNT}
vocab_list = list(vocab_final.keys())
s_clocal, c_clocal, s_relocal, c_relocal, gs_timings = timed_grid_generator(vocab_list, startIndex, endIndex, grid_type, fixed_len)
slide_strings = [' '.join(w) for w in s_clocal]
chunk_strings = [' '.join(w) for w in c_clocal]
num_slides = len(slide_strings)
content_strings = []
content_strings.extend(slide_strings)
content_strings.extend(chunk_strings)
vectorizer = TfidfVectorizer()
tfidf_wm = vectorizer.fit_transform(content_strings)
tfidf_array = tfidf_wm.toarray()
s_vlocal = tfidf_array[0:num_slides]
c_vlocal = tfidf_array[num_slides:len(tfidf_array)]
return s_vlocal, c_vlocal, s_clocal, c_clocal, s_relocal, c_relocal, gs_timings