-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCorrelCoef.bas
169 lines (141 loc) · 6.25 KB
/
CorrelCoef.bas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
Attribute VB_Name = "CorrelCoef"
Function getRanks(x As Variant) As Variant
Dim hlpField() As Double
Dim i As Integer
Dim indicator As Boolean
Dim swp As Variant
Dim res() As Variant
ReDim hlpField(UBound(x), 1)
indicator = True
'loading data to auxiliary array, adding index of an observation
For i = 0 To UBound(x)
hlpField(i, 0) = x(i)
hlpField(i, 1) = i
Next i
'sorting according to magnitude of observed variable (bubble sort)
While indicator
indicator = False
For i = 1 To UBound(x)
If hlpField(i - 1, 0) > hlpField(i, 0) Then 'sorting according to observed value
indicator = True
'observed value
swp = hlpField(i - 1, 0)
hlpField(i - 1, 0) = hlpField(i, 0)
hlpField(i, 0) = swp
'index of observation must remain the same
swp = hlpField(i - 1, 1)
hlpField(i - 1, 1) = hlpField(i, 1)
hlpField(i, 1) = swp
End If
Next i
Wend
'a rank is added to each observation instead of observed value (i.e. the minimum has rank 1, maximum n, n = number of observation)
For i = 0 To UBound(x)
hlpField(i, 0) = i + 1
Next i
indicator = True
'sorting according to index of observation -> each observation is assigned with the rank of observed value
While indicator
indicator = False
For i = 1 To UBound(x)
If hlpField(i - 1, 1) > hlpField(i, 1) Then 'cislo pozorovani
indicator = True
swp = hlpField(i - 1, 0)
hlpField(i - 1, 0) = hlpField(i, 0)
hlpField(i, 0) = swp
swp = hlpField(i - 1, 1)
hlpField(i - 1, 1) = hlpField(i, 1)
hlpField(i, 1) = swp
End If
Next i
Wend
ReDim res(UBound(x))
'resulting array contains only ranks instead of , index of the observation is determined by the array index
For i = 0 To UBound(x)
res(i) = hlpField(i, 0)
Next i
getRanks = res
End Function
Function spearmanCorrel(x As Range, y As Range)
Dim n As Integer
Dim i As Integer
Dim dataArrayX() As Variant
Dim dataArrayY() As Variant
If x.Rows.Count = y.Rows.Count And x.Columns.Count = 1 And y.Columns.Count = 1 Then
n = 0
'determing number of numeric values in input arrays x and y
For i = 1 To x.Rows.Count
If x.Cells(i, 1).Value <> "" And y.Cells(i, 1).Value <> "" _
And IsNumeric(x.Cells(i, 1).Value) And IsNumeric(y.Cells(i, 1).Value) Then n = n + 1
Next i
'loading numeric values in input arrays to auxiliary arrays
ReDim dataArrayX(n - 1)
ReDim dataArrayY(n - 1)
n = 0
For i = 1 To x.Rows.Count
If x.Cells(i, 1).Value <> "" And y.Cells(i, 1).Value <> "" _
And IsNumeric(x.Cells(i, 1).Value) And IsNumeric(y.Cells(i, 1).Value) Then
dataArrayX(n) = x.Cells(i, 1).Value
dataArrayY(n) = y.Cells(i, 1).Value
n = n + 1
End If
Next i
'sorting data in arrays, dataArray X and Y now contain ranks of values of variables x and y for each observation
dataArrayX = getRanks(dataArrayX)
dataArrayY = getRanks(dataArrayY)
'spearman coefficient calculation - s = 1 - 6sum(d_i^2)[(n(n^2-1)]
For i = 0 To n - 1
spearmanCorrel = spearmanCorrel + (dataArrayX(i) - dataArrayY(i)) ^ 2
Next i
spearmanCorrel = 1 - 6 * spearmanCorrel / (n * (n ^ 2 - 1))
Else
spearmanCorrel = xlErrNA
End If
End Function
Function kendallCorrel(x As Range, y As Range)
Dim n As Integer
Dim i As Integer, j As Integer
Dim c As Integer, d As Integer
Dim dataArrayX() As Variant
Dim dataArrayY() As Variant
If x.Rows.Count = y.Rows.Count And x.Columns.Count = 1 And y.Columns.Count = 1 Then
n = 0
'determing number of numeric values in input arrays x and y
For i = 1 To x.Rows.Count
If x.Cells(i, 1).Value <> "" And y.Cells(i, 1).Value <> "" _
And IsNumeric(x.Cells(i, 1).Value) And IsNumeric(y.Cells(i, 1).Value) Then n = n + 1
Next i
'loading numeric values in input arrays to auxiliary arrays
ReDim dataArrayX(n - 1)
ReDim dataArrayY(n - 1)
n = 0
For i = 1 To x.Rows.Count
If x.Cells(i, 1).Value <> "" And y.Cells(i, 1).Value <> "" _
And IsNumeric(x.Cells(i, 1).Value) And IsNumeric(y.Cells(i, 1).Value) Then
dataArrayX(n) = x.Cells(i, 1).Value
dataArrayY(n) = y.Cells(i, 1).Value
n = n + 1
End If
Next i
For i = 0 To n - 1
'i - pivot observation
For j = i + 1 To n - 1
'checking all observation with index higher than pivot whether the direction of change is same in both x and y variables
If dataArrayX(j) - dataArrayX(i) = 0 Then 'same rank of variable x as pivot, do nothing
ElseIf dataArrayY(j) - dataArrayY(i) = 0 Then 'constant function (y same as in case of pivot)
c = c + 0.5
d = d + 0.5
ElseIf Sgn(dataArrayY(j) - dataArrayY(i)) = Sgn(dataArrayX(j) - dataArrayX(i)) Then
'same direction of change => concordation, i.e. positive correlation
c = c + 1
ElseIf Sgn(dataArrayY(j) - dataArrayY(i)) = -Sgn(dataArrayX(j) - dataArrayX(i)) Then
'oposite direction of change => discordation, i.e. negative correlation
d = d + 1
End If
Next j
Next i
kendallCorrel = (c - d) / (c + d) 'c+d - total number of comparisons, c-d - if c>d then correlation is positive
Else
kendallCorrel = xlErrNA
End If
End Function