-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
126 lines (99 loc) · 3.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import collections
import cv2
import numpy as np
import matplotlib.pyplot as plt
import gym
def plot_learning_curve(x, scores, epsilons, filename):
fig = plt.figure()
ax = fig.add_subplot(111, label='1')
ax2 = fig.add_subplot(111, label='2', frame_on=False)
ax.plot(x, epsilons, color='C0')
ax.set_xlabel('Training Steps', color='C0')
ax.set_ylabel('Epsilon', color='C0')
ax.tick_params(axis='x', color='C0')
ax.tick_params(axis='y', color='C0')
N = len(scores)
running_avg = np.empty(N)
for t in range(N):
running_avg[t] = np.mean(scores[np.max([0, t - 100]):(t + 1)])
ax2.scatter(x, running_avg, color='C1')
ax2.axes.get_xaxis().set_visible(False)
ax2.yaxis.tick_right()
ax2.set_ylabel('Score', color='C1')
ax2.yaxis.set_label_position('right')
ax2.tick_params(axis='y', color='C1')
plt.savefig(filename)
class RepeatActionAndMaxFrame(gym.Wrapper):
def __init__(self, env=None, repeat=4, clip_rewards=False,
no_ops=0, fire_first=False):
super(RepeatActionAndMaxFrame, self).__init__(env)
self.repeat = repeat
self.shape = env.observation_space.low.shape
self.frame_buffer = np.zeros(tuple([2]) + self.shape)
self.clip_rewards = clip_rewards
self.no_ops = no_ops
self.fire_first = fire_first
def step(self, action):
t_reward = 0.0
done = False
for i in range(self.repeat):
obs, reward, done, info = self.env.step(action)
if self.clip_rewards:
reward = np.clip(np.array([reward]), -1, 1)[0]
t_reward += reward
idx = i % 2
self.frame_buffer[idx] = obs
if done:
break
max_frame = np.maximum(self.frame_buffer[0], self.frame_buffer[1])
return max_frame, t_reward, done, info
def reset(self, **kwargs):
obs = self.env.reset()
no_ops = np.random.randint(self.no_ops) + 1 if self.no_ops > 0 else 0
for _ in range(no_ops):
_, _, done, _ = self.env.step(0)
if done:
self.env.reset()
if self.fire_first:
assert self.env.unwrapped.get_action_meaning()[1] == 'FIRE'
obs, _, _, _ = self.env.step(1)
self.frame_buffer = np.zeros_like((2, self.shape))
self.frame_buffer[0] = obs
return obs
class PreprocessFrame(gym.ObservationWrapper):
def __init__(self, shape, env=None):
super(PreprocessFrame, self).__init__(env)
self.shape = (shape[2], shape[0], shape[1])
self.observation_space = gym.spaces.Box(low=0.0, high=1.0,
shape=self.shape, dtype=np.float32)
def observation(self, obs):
new_frame = cv2.cvtColor(obs, cv2.COLOR_BGR2GRAY)
resized_screen = cv2.resize(new_frame, self.shape[1:],
interpolation=cv2.INTER_AREA)
new_obs = np.array(resized_screen, dtype=np.uint8).reshape(self.shape)
new_obs = new_obs / 255.0
return new_obs
class StackFrames(gym.ObservationWrapper):
def __init__(self, env, repeat):
super(StackFrames, self).__init__(env)
self.observation_space = gym.spaces.Box(
env.observation_space.low.repeat(repeat, axis=0),
env.observation_space.high.repeat(repeat, axis=0),
dtype=np.float32)
self.stack = collections.deque(maxlen=repeat)
def reset(self, **kwargs):
self.stack.clear()
observation = self.env.reset()
for _ in range(self.stack.maxlen):
self.stack.append(observation)
return np.array(self.stack).reshape(self.observation_space.low.shape)
def observation(self, observation):
self.stack.append(observation)
return np.array(self.stack).reshape(self.observation_space.low.shape)
def make_env(env_name, shape=(84, 84, 1), repeat=4, clip_rewards=False,
no_ops=0, fire_first=False):
env = gym.make(env_name)
env = RepeatActionAndMaxFrame(env, repeat, clip_rewards, no_ops, fire_first)
env = PreprocessFrame(shape, env)
env = StackFrames(env, repeat)
return env