-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconred.m
100 lines (99 loc) · 4.7 KB
/
conred.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
% CONRED.F - MEX-function for SLICOT controller reduction routine
% SB16AD.F.
%
% Matlab call:
% [Acr,Bcr,Ccr,Dcr,HSVC,info] = CONRED(meth,Ac,Bc,Cc,Dc,A,B,C,D,...
% tol,discr,ord,alpha)
%
% Purpose:
% To compute a reduced order controller (Acr,Bcr,Ccr,Dcr) for an
% original state-space controller representation (Ac,Bc,Cc,Dc) by
% using the frequency-weighted square-root or balancing-free
% square-root Balance & Truncate (B&T) or Singular Perturbation
% Approximation (SPA) model reduction methods. The algorithm tries
% to minimize the norm of the frequency-weighted error
%
% ||V*(K-Kr)*W||
%
% where K and Kr are the transfer-function matrices of the original
% and reduced order controllers, respectively. V and W are special
% frequency-weighting transfer-function matrices constructed
% to enforce closed-loop stability and/or closed-loop performance.
% If G is the transfer-function matrix of the open-loop system, then
% the following weightings V and W can be used:
% -1
% (a) V = (I-G*K) *G, W = I - to enforce closed-loop stability;
% -1
% (b) V = I, W = (I-G*K) *G - to enforce closed-loop stability;
% -1 -1
% (c) V = (I-G*K) *G, W = (I-G*K) - to enforce closed-loop
% stability and performance.
%
% G has the state space representation (A,B,C,D).
% If K is unstable, only the ALPHA-stable part of K is reduced.
%
% Description of input parameters:
% meth - method flag of decimal form ijkl, where
% i = 1 : use standard choice for controllability Grammian;
% i = 2 : use stability garanteeing choice for the
% controllability Grammian;
% j = 1 : use standard choice for observability Grammian;
% j = 2 : use stability garanteeing choice for the
% observability Grammian;
% k = 1 : use the square-root BT method;
% k = 2 : use the balancing-free square-root BT method;
% k = 3 : use the square-root SPA method;
% k = 4 : use the balancing-free square-root SPA method;
% l = 1 : no weightings are used;
% l = 2 : stability enforcing left (output) weighting;
% l = 3 : stability enforcing right (input) weighting;
% l = 4 : stability and performance enforcing weightings.
% Note: For a complete explanation on Grammian choices
% see subroutine SB16AD.
% AC,BC,
% CC,DC - state-space system matrices of size NC-by-NC, NC-by-P,
% M-by-NC, and M-by-P, respectively.
% A,B,
% C,D - (optional) state-space system matrices of size
% N-by-N, N-by-M, P-by-N, and P-by-M, respectively.
% tol - (optional) tolerance vector for determining the order of
% reduced system, of the form [tol1, tol2], where:
% tol1 specifies the tolerance for model reduction.
% Default: tol1 = NCS*epsilon_machine*HSVC(1), where
% NCS is the order of the alpha-stable part of K.
% tol2 specifies the tolerance for minimal realization.
% Default: tol2 = NCS*epsilon_machine*HSVC(1).
% discr - (optional) type of system:
% = 0 : continuous-time (default);
% = 1 : discrete-time.
% ord - (optional) desired order of reduced system.
% Default: ord = -1 (order determined automatically).
% alpha - (optional) stability boundary for the eigenvalues of AC.
% Default: -sqrt(epsilon_machine) for continuous-time;
% 1.0-sqrt(epsilon_machine) for discrete-time.
%
% Description of output parameters:
% Acr, Bcr,
% Ccr, Dcr - matrices of the reduced controller.
% HSVC - frequency-weighted Hankel singular values of the
% alpha-stable part of K.
% info - warning message code:
% info = 1 - selected order greater than the order
% of a minimal realization;
% info = 2 - selected order corresponds to repeated singular
% values, which are neither all included nor all
% excluded from the reduced model;
% info = 3 - selected order less than the order of
% the unstable part.
%
% RELEASE 2.0 of SLICOT Model and Controller Reduction Toolbox.
% Based on SLICOT RELEASE 5.7, Copyright (c) 2002-2020 NICONET e.V.
%
% Contributors:
% D. Sima, University of Bucharest, and
% A. Varga, German Aerospace Center,
% DLR Oberpfaffenhofen, March 2001.
%
% Revisions:
% V. Sima, Research Institute for Informatics, Bucharest, June 2001.
%