-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
95 lines (77 loc) · 3.21 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import shutil
import sys
import platform
import pandas as pd
from preprocessor import image_center_crop
if not os.path.exists("./data"):
os.mkdir("./data")
if not os.path.exists("./data/coronahack-chest-xraydataset.zip"):
os.chdir("./data")
os.system("kaggle datasets download -d praveengovi/coronahack-chest-xraydataset")
os.chdir("..")
else:
print("Download found...")
print("Starting Extraction")
print(platform.system())
if platform.system() in ["Linux", "Darwin"]:
os.system('unzip -q "./data/coronahack-chest-xraydataset.zip" -d "./data/"')
else:
os.system(
'tar -xf "./data/coronahack-chest-xraydataset.zip" --directory "./data/" '
)
print("Extraction Complete")
print("Reading Metadata")
images_data = pd.read_csv("./data/Chest_xray_Corona_Metadata.csv")
os.mkdir("./data/Corona_Classification_data")
os.mkdir("./data/Corona_Classification_data/train")
os.mkdir("./data/Corona_Classification_data/train/INFECTED")
os.mkdir("./data/Corona_Classification_data/train/NORMAL")
os.mkdir("./data/Corona_Classification_data/test")
os.mkdir("./data/Corona_Classification_data/test/NORMAL")
os.mkdir("./data/Corona_Classification_data/test/INFECTED")
print("Starting Preprocessing and Moving According to Labels...")
for index, row in images_data.iterrows():
if row["Dataset_type"] == "TRAIN":
path_of_image = f"./data/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/train/{row['X_ray_image_name']}"
image_center_crop(path_of_image)
if row["Label"] == "Normal":
shutil.move(
path_of_image,
f"./data/Corona_Classification_data/train/NORMAL/{row['X_ray_image_name']}",
)
if row["Label"] == "Pnemonia":
shutil.move(
path_of_image,
f"./data/Corona_Classification_data/train/INFECTED/{row['X_ray_image_name']}",
)
if row["Dataset_type"] == "TEST":
path_of_image = f"./data/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/test/{row['X_ray_image_name']}"
image_center_crop(path_of_image)
if row["Label"] == "Normal":
shutil.move(
path_of_image,
f"./data/Corona_Classification_data/test/NORMAL/{row['X_ray_image_name']}",
)
if row["Label"] == "Pnemonia":
shutil.move(
path_of_image,
f"./data/Corona_Classification_data/test/INFECTED/{row['X_ray_image_name']}",
)
sys.stdout.write(f"\rCropping Successfull for {row['X_ray_image_name']}")
sys.stdout.flush()
print("Moving Complete")
shutil.rmtree("./data/Coronahack-Chest-XRay-Dataset")
files_to_be_deleted = [
"1-s2.0-S1684118220300682-main.pdf-002-a1.png",
"1-s2.0-S1684118220300682-main.pdf-002-a2.png",
"1-s2.0-S1684118220300682-main.pdf-003-b1.png",
"1-s2.0-S1684118220300682-main.pdf-003-b2.png",
"7EF28E12-F628-4BEC-A8C5-E6277C2E4F60.png",
"23E99E2E-447C-46E5-8EB2-D35D12473C39.png",
"41591_2020_819_Fig1_HTML.webp-day5.png",
"41591_2020_819_Fig1_HTML.webp-day10.png",
]
for filename in files_to_be_deleted:
os.remove(f"./data/Corona_Classification_data/train/INFECTED/{filename}")
print("Cleaning Complete")