-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
553 lines (462 loc) · 24.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.transforms as transforms
from model import MLPNet, CNN_small, CNN, NewsNet, LeNet, LeNet_bayes
from torch.optim.lr_scheduler import MultiStepLR
import torch.backends.cudnn as cudnn
import torchvision.models as tv_models
import torch.utils.data as Data
import argparse, sys
import numpy as np
import transformer
from tqdm import tqdm
import datetime
import data
import copy
import tools
import resnet
import resnet_bayes
from collections import OrderedDict
parser = argparse.ArgumentParser()
parser.add_argument('--n', type=int, default=5, help="No.")
parser.add_argument('--d', type=str, default='Bayesian-T_cifar10', help="description")
parser.add_argument('--p', type=int, default=1, help="print")
parser.add_argument('--c', type=int, default=10, help="class")
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--result_dir', type=str, help='dir to save result txt files', default='results_ours')
parser.add_argument('--noise_rate', type=float, help='overall corruption rate, should be less than 1', default=0.3)
parser.add_argument('--noise_type', type=str, help='[pairflip, symmetric, asymmetric]', default='instance')
parser.add_argument('--dataset', type=str, help='fmnist, cifar10,svhn', default='svhn')
parser.add_argument('--n_epoch', type=int, default=20)
parser.add_argument('--optimizer', type=str, default='SGD')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--print_freq', type=int, default=100)
parser.add_argument('--num_workers', type=int, default=8, help='how many subprocesses to use for data loading')
parser.add_argument('--epoch_decay_start', type=int, default=1)
parser.add_argument('--model_type', type=str, help='[ce, ours]', default='ours')
parser.add_argument('--fr_type', type=str, help='forget rate type', default='type_1')
parser.add_argument('--nonzero_ratio', type=float, help='choose pruning ratio', default=0.2)
parser.add_argument('--split_per', type=float, help='train and validation', default=0.9)
parser.add_argument('--gpu', type=int, help='ind of gpu', default=0)
parser.add_argument('--weight_decay', type=float, help='l2', default=5e-4)
parser.add_argument('--momentum', type=int, help='momentum', default=0.9)
parser.add_argument('--batch_size', type=int, help='batch_size', default=128)
parser.add_argument('--split_percentage', type = float, help = 'train and validation', default=0.9)
parser.add_argument('--rho', type = float, help = 'rho', default=0.1)
args = parser.parse_args()
#
torch.cuda.set_device(args.gpu)
print(args)
# Seed
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Hyper Parameters
batch_size = args.batch_size
learning_rate = args.lr
# load dataset
def load_data(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if args.dataset=='fmnist':
args.feature_size = 28 * 28
args.num_classes = 10
args.n_epoch = 20
train_dataset = data.fashionmnist_dataset(True,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ),(0.3081, )),]),
target_transform=tools.transform_target,
noise_rate=args.noise_rate,
split_percentage=args.split_percentage,
seed=args.seed)
val_dataset = data.fashionmnist_dataset(False,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ),(0.3081, )),]),
target_transform=tools.transform_target,
noise_rate=args.noise_rate,
split_percentage=args.split_percentage,
seed=args.seed)
test_dataset = data.fashionmnist_test_dataset(
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ),(0.3081, )),]),
target_transform=tools.transform_target)
if args.dataset=='cifar10':
args.num_classes = 10
args.feature_size = 3 * 32 * 32
args.n_epoch = 20
train_dataset = data.cifar10_dataset(True,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),(0.2023, 0.1994, 0.2010)),
]),
target_transform=tools.transform_target,
noise_rate=args.noise_rate,
split_percentage=args.split_percentage,
seed=args.seed)
val_dataset = data.cifar10_dataset(False,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),(0.2023, 0.1994, 0.2010)),
]),
target_transform=tools.transform_target,
noise_rate=args.noise_rate,
split_percentage=args.split_percentage,
seed=args.seed)
test_dataset = data.cifar10_test_dataset(
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),(0.2023, 0.1994, 0.2010)),
]),
target_transform=tools.transform_target)
if args.dataset=='svhn':
args.num_classes = 10
args.feature_size = 3 * 32 * 32
args.n_epoch = 20
train_dataset = data.svhn_dataset(True,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5)),
]),
target_transform=tools.transform_target,
noise_rate=args.noise_rate,
split_percentage=args.split_percentage,
seed=args.seed)
val_dataset = data.svhn_dataset(False,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5)),
]),
target_transform=tools.transform_target,
noise_rate=args.noise_rate,
split_percentage=args.split_percentage,
seed=args.seed)
test_dataset = data.svhn_test_dataset(
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5)),
]),
target_transform=tools.transform_target)
return train_dataset, val_dataset, test_dataset
save_dir = args.result_dir + '/' + args.dataset + '/%s/' % args.model_type
if not os.path.exists(save_dir):
os.system('mkdir -p %s' % save_dir)
model_str = args.dataset + '_%s_' % str(args.noise_rate)+'_'+str(args.rho)
def accuracy(logit, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
output = F.softmax(logit, dim=1)
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
# Train the Model
def train_one_step(net, data, label, optimizer, criterion):
net.train()
pred = net(data)
loss = criterion(pred, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
optimizer.zero_grad()
acc = accuracy(pred, label, topk=(1,))
return float(acc[0]), loss
def train(train_loader, epoch, model1, optimizer1):
print('Training %s...' % model_str)
model1.train()
train_total = 0
train_correct = 0
for i, (data, noisy_label, clean_label, indexes) in enumerate(train_loader):
ind = indexes.cpu().numpy().transpose()
data = data.cuda()
labels = noisy_label.cuda()
# Forward + Backward + Optimize
logits1 = model1(data)
prec1, = accuracy(logits1, labels, topk=(1,))
train_total += 1
train_correct += prec1
# Loss transfer
# prec1, loss = train_one_step(model, data, labels, optimizer1, nn.CrossEntropyLoss(), 1-args.noise_rate, clip)
prec1, loss = train_one_step(model1, data, labels, optimizer1, nn.CrossEntropyLoss())
if (i + 1) % args.print_freq == 0:
print('Epoch [%d], Iter [%d/%d] Training Accuracy1: %.4F, Loss1: %.4f'
% (epoch + 1, i + 1, 50000 // batch_size, prec1, loss.item()))
train_acc1 = float(train_correct) / float(train_total)
return train_acc1
# Evaluate the Model
def evaluate(val_loader, model1):
print('Evaluating %s...' % model_str)
model1.eval() # Change model to 'eval' mode.
correct1 = 0
total1 = 0
with torch.no_grad():
for data, noisy_label, clean_label, _ in val_loader:
data = data.cuda()
logits1 = model1(data)
outputs1 = F.softmax(logits1, dim=1)
_, pred1 = torch.max(outputs1.data, 1)
total1 += noisy_label.size(0)
correct1 += (pred1.cpu() == clean_label.long()).sum()
acc1 = 100 * float(correct1) / float(total1)
return acc1
def train_forward(model, train_loader, epoch, optimizer, Bayesian_T, revision=True):
train_total=0
train_correct=0
for i, (data, labels, _, indexes) in enumerate(train_loader):
data = data.cuda()
labels = labels.cuda()
loss = 0.
# Forward + Backward + Optimize
optimizer.zero_grad()
logits, delta = model(data, revision=True)
bayes_post = F.softmax(logits, dim=1)
delta = delta.repeat(len(labels),1,1)
T = Bayesian_T(data)
if revision == True:
T = tools.norm(T + delta)
noisy_post = torch.bmm(bayes_post.unsqueeze(1),T.cuda()).squeeze(1)
log_noisy_post = torch.log(noisy_post+1e-12)
loss = nn.NLLLoss()(log_noisy_post.cuda(),labels.cuda())
prec1, = accuracy(noisy_post, labels, topk=(1, ))
train_total+=1
train_correct+=prec1
loss.backward()
optimizer.step()
train_acc=float(train_correct)/float(train_total)
return train_acc
def main(args):
# # Data Loader (Input Pipeline)
model_dir = save_dir + str(args.seed)+'_rate_'+str(args.noise_rate)+'_rho_'+str(args.rho)
if not os.path.exists(model_dir):
os.system('mkdir -p %s' % model_dir)
print('loading dataset...')
train_dataset, val_dataset, test_dataset = load_data(args)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
num_workers=args.num_workers,
drop_last=False,
shuffle=True)
train_loader_batch_1 = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=128,
num_workers=args.num_workers,
drop_last=False,
shuffle=False)
val_loader = torch.utils.data.DataLoader(dataset=val_dataset,
batch_size=batch_size,
num_workers=args.num_workers,
drop_last=False,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
num_workers=args.num_workers,
drop_last=False,
shuffle=False)
# # Define models
print('building model...')
if args.dataset == 'fmnist':
classifier = resnet.ResNet18_F(10).cuda()
if args.dataset == 'svhn':
classifier = resnet.ResNet34(10).cuda()
if args.dataset == 'cifar10':
classifier = resnet.ResNet34(10).cuda()
classifier.cuda()
cudnn.benchmark = True
# Warm up classifier to distill examples
val_acc_list = []
test_acc_list = []
best_acc = 0.
classifier.cuda()
cudnn.benchmark = True
optimizer_warmup = torch.optim.SGD(classifier.parameters(), lr=0.01, momentum=0.9)
print('starting warm up')
for epoch in range(0, 10):
classifier.train()
train_acc1 = train(train_loader, epoch, classifier, optimizer_warmup)
val_acc1 = evaluate(test_loader, classifier)
print('Warm up Epoch [%d] Test Accuracy on the %s test data: Model1 %.4f %%' % (
epoch + 1, len(test_dataset), val_acc1))
if val_acc1 > best_acc:
best_acc = val_acc1
torch.save(classifier.state_dict(), model_dir + '/' + 'warmup_model.pth')
# Distlled example collection
threshold = (1 + args.rho) / 2
classifier.load_state_dict(torch.load(model_dir + '/' + 'warmup_model.pth'))
test_acc1 = evaluate(test_loader, classifier)
print('Loading Test Accuracy on the %s val data: Model1 %.4f %%' % (
len(test_dataset), test_acc1))
distilled_example_index_list = []
distilled_example_labels_list = []
print('Distilling')
classifier.eval()
for i, (data, noisy_label, clean_label, indexes) in enumerate((train_loader_batch_1)):
data = data.cuda()
logits1= F.softmax(classifier(data), dim=1)
logits1_max = torch.max(logits1,dim=1)
mask = logits1_max[0]>threshold
distilled_example_index_list.extend(indexes[mask])
distilled_example_labels_list.extend(logits1_max[1].cpu()[mask])
print("Distilling finished")
distilled_example_index = np.array(distilled_example_index_list)
distilled_bayes_labels = np.array(distilled_example_labels_list)
distilled_images, distilled_noisy_labels, distilled_clean_labels = train_dataset.train_data[distilled_example_index], train_dataset.train_noisy_labels[distilled_example_index],train_dataset.train_clean_labels[distilled_example_index] # noisy labels
print("Number of distilled examples:"+str(len(distilled_bayes_labels)))
print("Accuracy of distilled examples collection:"+ str((np.array(distilled_bayes_labels) == np.array(distilled_clean_labels)).sum() / len(distilled_bayes_labels)))
np.save(model_dir+'/'+'distilled_images.npy',distilled_images)
np.save(model_dir+'/'+'distilled_bayes_labels.npy',distilled_bayes_labels)
np.save(model_dir+'/'+'distilled_noisy_labels.npy',distilled_noisy_labels)
np.save(model_dir+'/'+'distilled_clean_labels.npy',distilled_clean_labels)
print("Distilled dataset building")
import data
distilled_images = np.load(model_dir+'/'+'distilled_images.npy')
distilled_noisy_labels = np.load(model_dir+'/'+'distilled_noisy_labels.npy')
distilled_bayes_labels = np.load(model_dir+'/'+'distilled_bayes_labels.npy')
distilled_clean_labels = np.load(model_dir+'/'+'distilled_clean_labels.npy')
if args.dataset =='fmnist':
distilled_dataset_= data.distilled_dataset(distilled_images,
distilled_noisy_labels,
distilled_bayes_labels,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ),(0.3081, )),]),
target_transform=tools.transform_target
)
if args.dataset == 'cifar10':
distilled_dataset_= data.distilled_dataset(distilled_images,
distilled_noisy_labels,
distilled_bayes_labels,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),(0.2023, 0.1994, 0.2010)),]),
target_transform=tools.transform_target
)
if args.dataset == 'svhn':
distilled_dataset_= data.distilled_dataset(distilled_images,
distilled_noisy_labels,
distilled_bayes_labels,
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5)),]),
target_transform=tools.transform_target
)
train_loader_distilled = torch.utils.data.DataLoader(dataset=distilled_dataset_,
batch_size=batch_size,
num_workers=args.num_workers,
drop_last=False,
shuffle=True)
if args.dataset == 'fmnist':
Bayesian_T_Network = resnet_bayes.ResNet18_F(100)
warm_up_dict = classifier.state_dict()
temp = OrderedDict()
Bayesian_T_Network_state_dict = Bayesian_T_Network.state_dict()
classifier.load_state_dict(torch.load(model_dir + '/' + 'warmup_model.pth'))
for name, parameter in classifier.named_parameters():
if name in Bayesian_T_Network_state_dict:
temp[name] = parameter
Bayesian_T_Network_state_dict.update(temp)
Bayesian_T_Network.load_state_dict(Bayesian_T_Network_state_dict)
if args.dataset == 'svhn':
Bayesian_T_Network = resnet_bayes.ResNet34(100)
warm_up_dict = classifier.state_dict()
temp = OrderedDict()
Bayesian_T_Network_state_dict = Bayesian_T_Network.state_dict()
classifier.load_state_dict(torch.load(model_dir + '/' + 'warmup_model.pth'))
for name, parameter in classifier.named_parameters():
if name in Bayesian_T_Network_state_dict:
temp[name] = parameter
Bayesian_T_Network_state_dict.update(temp)
Bayesian_T_Network.load_state_dict(Bayesian_T_Network_state_dict)
if args.dataset == 'cifar10':
Bayesian_T_Network = resnet_bayes.ResNet34(100)
warm_up_dict = classifier.state_dict()
temp = OrderedDict()
Bayesian_T_Network_state_dict = Bayesian_T_Network.state_dict()
classifier.load_state_dict(torch.load(model_dir + '/' + 'warmup_model.pth'))
for name, parameter in classifier.named_parameters():
if name in Bayesian_T_Network_state_dict:
temp[name] = parameter
Bayesian_T_Network_state_dict.update(temp)
Bayesian_T_Network.load_state_dict(Bayesian_T_Network_state_dict)
# for name, parameter in Bayesian_T_Network.named_parameters():
# if 'bayes_linear' not in name:
# parameter.requires_grad = False
Bayesian_T_Network.cuda()
#Learning Bayes T
# clf_bayes_output -> transition matrix with size c*c
optimizer_bayes = torch.optim.SGD(Bayesian_T_Network.parameters(), lr=0.01, momentum=0.9)
loss_function = nn.NLLLoss()
for epoch in range(0, 50):
bayes_loss = 0.
Bayesian_T_Network.train()
for data, bayes_labels, noisy_labels, index in train_loader_distilled:
data = data.cuda()
bayes_labels, noisy_labels = bayes_labels.cuda(), noisy_labels.cuda()
# Forward + Backward + Optimize
batch_matrix = Bayesian_T_Network(data)# batch_size x 10 x 10
noisy_class_post = torch.zeros((batch_matrix.shape[0], 10))
for j in range(batch_matrix.shape[0]):
bayes_label_one_hot = torch.nn.functional.one_hot(bayes_labels[j], 10).float() # 1*10
bayes_label_one_hot = bayes_label_one_hot.unsqueeze(0)
noisy_class_post_temp = bayes_label_one_hot.float().mm(batch_matrix[j]) # 1*10 noisy
noisy_class_post[j, :] = noisy_class_post_temp
noisy_class_post = torch.log(noisy_class_post+1e-12)
loss = loss_function(noisy_class_post.cuda(), noisy_labels)
optimizer_bayes.zero_grad()
loss.backward()
optimizer_bayes.step()
bayes_loss += loss.item()
print('Bayesian-T Training Epoch [%d], Loss: %.4f'% (epoch + 1, loss.item()))
torch.save(Bayesian_T_Network.state_dict(), model_dir + '/' + 'BayesianT.pth')
# loss_correction
val_acc_list = []
test_acc_list = []
classifier.load_state_dict(torch.load(model_dir + '/' + 'warmup_model.pth'))
nn.init.constant_(classifier.T_revision.weight, 0.0)
Bayesian_T_Network.load_state_dict(torch.load(model_dir + '/' + 'BayesianT.pth'))
print('Loading Test Accuracy on the %s test data: Model1 %.4f %%' % (
len(test_dataset), evaluate(test_loader, classifier)))
optimizer_r = torch.optim.Adam(classifier.parameters(), lr=5e-7, weight_decay=1e-4)
for epoch in range(0, args.n_epoch):
classifier.train()
Bayesian_T_Network.eval()
train_total = 0
train_correct = 0
train_acc = train_forward(classifier,train_loader,epoch,optimizer_r,Bayesian_T_Network,revision=True)
test_acc = evaluate(test_loader, classifier)
test_acc_list.append(test_acc)
# save results
print('Epoch [%d/%d] Train Accuracy on the %s train data: Model1 %.4f %% ' % (
epoch + 1, args.n_epoch, len(train_dataset), train_acc))
# print('Epoch [%d/%d] Val Accuracy on the %s val data: Model1 %.4f %% ' % (
# epoch + 1, args.n_epoch, len(val_dataset), val_acc1))
print('Epoch [%d/%d] Test Accuracy on the %s test data: Model1 %.4f %%' % (
epoch + 1, args.n_epoch, len(test_dataset), test_acc))
id = np.argmax(np.array(test_acc_list))
test_acc_max = test_acc_list[id]
print('Test Acc: ')
print(test_acc_max)
return test_acc_max
if __name__ == '__main__':
acclist = []
for i in range(args.n):
args.seed = i + 1
args.output_dir = './' + args.d + '/' + str(args.noise_rate) + '/'
if not os.path.exists(args.output_dir):
os.system('mkdir -p %s' % (args.output_dir))
if args.p == 0:
f = open(args.output_dir + str(args.noise_type) + '_' + str(args.dataset) + '_' + str(args.rho) + '.txt', 'a')
sys.stdout = f
sys.stderr = f
acc = main(args)
acclist.append(acc)
print(np.array(acclist).mean())
print(np.array(acclist).std(ddof=1))