Skip to content

Latest commit

 

History

History
67 lines (49 loc) · 2.64 KB

README.md

File metadata and controls

67 lines (49 loc) · 2.64 KB

flash-attention-minimal中文增强版

fp16就在路上!

现在有什么问题

没有反向传播!老实说,我发现反向传播比前向传播复杂得多,而前向传播已经足够展示如何使用共享内存来避免大量的 N^2 读/写操作。

在内循环中,我将每个线程分配给输出矩阵的一行。这与原始实现有所不同。

这种每线程一行的简化使得矩阵乘法非常慢。这可能是为什么对于较长的序列和较大的块大小,这比手动实现要慢。

Q、K、V 是 float32,不像原始实现中使用的 float16。

块大小在编译时固定为 32。

在之前的基础上我们要做什么?

  • 添加代码阅读注释
  • 尝试实现一个fp16的版本
  • 尝试修改某些限制,比如很慢的矩阵乘法。
  • 实现一个可变的QKV块
  • 添加反向传播

————————————————————origin————————————————————————————

A minimal re-implementation of Flash Attention with CUDA and PyTorch. The official implementation can be quite daunting for a CUDA beginner (like myself), so this repo tries to be small and educational.

  • The entire forward pass is written in ~100 lines in flash.cu.
  • The variable names follow the notations from the original paper.

Usage

Prerequisite

  • PyTorch (with CUDA)
  • Ninja for loading in C++

Benchmark

Compare the wall-clock time between manual attention and minimal flash attention:

python bench.py

Sample output on a T4:

=== profiling manual attention ===
...
Self CPU time total: 52.389ms
Self CUDA time total: 52.545ms

=== profiling minimal flash attention === 
...  
Self CPU time total: 11.452ms
Self CUDA time total: 3.908ms

Speed-up achieved!

Caveats

  • No backward pass! To be honest, I found it a lot more complex than the forward pass, which was enough to show the use of shared memory to avoid large N^2 read/writes.
  • In the inner loop, I assign each thread to a row of the output matrix. This differs from the original implementation.
  • This thread-per-row simplification makes the matrix multiplications very slow. This is probably why for longer sequences and larger block sizes, this gets slower than the manual implementation.
  • Q,K,Vs are in float32, unlike the original implementation which uses float16.
  • The block size is fixed at compile time to 32.