-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstates_tags.py
71 lines (50 loc) · 2.44 KB
/
states_tags.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pandas as pd
import numpy as np
def States_tags(df):
## Creating list of states in India
India_state_list = ['Andaman and Nicobar Islands', 'Andhra Pradesh', 'Arunachal Pradesh', 'Assam', 'Bihar', 'Chandigarh',
'Chhattisgarh', 'Dadra and Nagar Haveli', 'Daman and Diu', 'Delhi', 'Goa', 'Gujarat', 'Haryana',
'Himachal Pradesh', 'Jammu and Kashmir', 'Jharkhand', 'Karnataka', 'Kerala', 'Lakshadweep', 'Madhya Pradesh',
'Maharashtra', 'Manipur', 'Meghalaya', 'Mizoram', 'Nagaland', 'Odisha', 'Puducherry', 'Punjab',
'Rajasthan', 'Sikkim', 'Tamil Nadu', 'Tripura', 'Uttar Pradesh', 'Uttarakhand', 'West Bengal'
]
## Getting text wrt states
Location_list = []
text_list = []
for locations, text in zip(df.Location, df.Text):
locations = locations.lower().split(',')[0]
for states in India_state_list:
states = states.lower()
if locations == states:
Location_list.append(states)
text_list.append(text)
## Converting into dataframe
df = pd.DataFrame({'Locations': Location_list,
'Text': text_list
})
## Getting relevant hashtags
# Converting to lower case
df['Text'] = df['Text'].apply(lambda x: x.lower())
# Removing urls
df['Text'] = df['Text'].apply(lambda x: x.split('https')[0])
df['Text'] = df['Text'].apply(lambda x: x.split('http')[0])
def func(x):
try:
return x.split('#')[1].split(' ')[0]
except:
return None
# Column for hashtags
df['Hash_tags'] = df['Text'].apply(lambda x: func(x))
# Removing unwanted char
df['Hash_tags'] = df['Hash_tags'].str.replace(
"(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ")
## Getting required result (Top 5 repeated hashtags)
# Accessing different locations...
locations_list = list(sorted(set([i for i in df.Locations])))
# Creating empty dictionary; used to update locations along with its relevant hashtags
state_tags_dict = dict()
for locations in locations_list:
tags_count_dict = dict(
df[df.Locations == locations].Hash_tags.value_counts().head())
state_tags_dict[locations] = tags_count_dict
return state_tags_dict