-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel_cyclegan.py
105 lines (82 loc) · 2.9 KB
/
model_cyclegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch
from torch import nn
class ConvLayer(nn.Module):
def __init__(self, channel_input, channel_output, kernal, stride, padding):
super(ConvLayer, self).__init__()
self.layers = nn.Sequential(
nn.Conv2d(channel_input, channel_output, kernal, stride, padding),
nn.InstanceNorm2d(channel_output),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.layers(x)
class ConvLayer2(nn.Module):
def __init__(self, channel_input, channel_output, kernal, stride, padding):
super(ConvLayer2, self).__init__()
self.layers = nn.Sequential(
nn.Conv2d(channel_input, channel_output, kernal, stride, padding),
nn.BatchNorm2d(channel_output),
nn.LeakyReLU(0.2, inplace=True)
)
def forward(self, x):
return self.layers(x)
class DeconvLayer(nn.Module):
def __init__(self, channel_input, channel_output, kernal, stride, padding):
super(DeconvLayer, self).__init__()
self.layers = nn.Sequential(
nn.ConvTranspose2d(channel_input, channel_output, kernal, stride, padding, output_padding=1),
nn.InstanceNorm2d(channel_output),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.layers(x)
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.layers = nn.Sequential(
ConvLayer(3, 64, 7, 1, 3),
ConvLayer(64, 128, 3, 2, 1),
ConvLayer(128, 256, 3, 2, 1)
)
def forward(self, x):
return self.layers(x)
class Transformer(nn.Module):
def __init__(self):
super(Transformer, self).__init__()
self.layers = nn.Sequential(*[ConvLayer(256, 256, 3, 1, 1) for i in range(6)])
def forward(self, x):
return self.layers(x)
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.layers = nn.Sequential(
DeconvLayer(256, 128, 3, 2, 1),
DeconvLayer(128, 64, 3, 2, 1),
ConvLayer(64, 3, 7, 1, 3)
)
def forward(self, x):
return self.layers(x)
class CycleGANGenerator(nn.Module):
def __init__(self):
super(CycleGANGenerator, self).__init__()
self.layers = nn.Sequential(
Encoder(),
Transformer(),
Decoder(),
nn.Tanh()
)
def forward(self, x):
return self.layers(x)
class CycleGANDiscriminator(nn.Module):
def __init__(self):
super(CycleGANDiscriminator, self).__init__()
self.layers = nn.Sequential(
ConvLayer2(3, 64, 4, 2, 1),
ConvLayer2(64, 128, 4, 2, 1),
ConvLayer2(128, 256, 4, 2, 1),
ConvLayer2(256, 512, 4, 1, 1),
nn.Conv2d(512, 1, 4, 1, 1),
nn.Sigmoid()
)
def forward(self, x):
return self.layers(x)