-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinfill.cpp
875 lines (792 loc) · 39.7 KB
/
infill.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
//Copyright (c) 2019 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include <algorithm> //For std::sort.
#include <functional>
#include <unordered_set>
#include "infill.h"
#include "sliceDataStorage.h"
#include "infill/ImageBasedDensityProvider.h"
#include "infill/GyroidInfill.h"
#include "infill/NoZigZagConnectorProcessor.h"
#include "infill/SierpinskiFill.h"
#include "infill/SierpinskiFillProvider.h"
#include "infill/SubDivCube.h"
#include "infill/UniformDensityProvider.h"
#include "utils/logoutput.h"
#include "utils/PolygonConnector.h"
#include "utils/polygonUtils.h"
#include "utils/UnionFind.h"
/*!
* Function which returns the scanline_idx for a given x coordinate
*
* For negative \p x this is different from simple division.
*
* \warning \p line_width is assumed to be positive
*
* \param x the point to get the scansegment index for
* \param line_width the width of the scan segments
*/
static inline int computeScanSegmentIdx(int x, int line_width)
{
if (x < 0)
{
return (x + 1) / line_width - 1;
// - 1 because -1 belongs to scansegment -1
// + 1 because -line_width belongs to scansegment -1
}
return x / line_width;
}
namespace cura {
void Infill::generate(Polygons& result_polygons, Polygons& result_lines, const SierpinskiFillProvider* cross_fill_provider, const SliceMeshStorage* mesh)
{
coord_t outline_offset_raw = outline_offset;
outline_offset -= wall_line_count * infill_line_width; // account for extra walls
if (infill_multiplier > 1)
{
bool zig_zaggify_real = zig_zaggify;
if (infill_multiplier % 2 == 0)
{
zig_zaggify = false; // generate the basic infill pattern without going via the borders
}
Polygons generated_result_polygons;
Polygons generated_result_lines;
_generate(generated_result_polygons, generated_result_lines, cross_fill_provider, mesh);
zig_zaggify = zig_zaggify_real;
multiplyInfill(generated_result_polygons, generated_result_lines);
result_polygons.add(generated_result_polygons);
result_lines.add(generated_result_lines);
}
else
{
//_generate may clear() the generated_result_lines, but this is an output variable that may contain data before we start.
//So make sure we provide it with a Polygons that is safe to clear and only add stuff to result_lines.
Polygons generated_result_polygons;
Polygons generated_result_lines;
_generate(generated_result_polygons, generated_result_lines, cross_fill_provider, mesh);
result_polygons.add(generated_result_polygons);
result_lines.add(generated_result_lines);
}
// generate walls around infill pattern
for (size_t wall_idx = 0; wall_idx < wall_line_count; wall_idx++)
{
const coord_t distance_from_outline_to_wall = outline_offset_raw - infill_line_width / 2 - wall_idx * infill_line_width;
result_polygons.add(in_outline.offset(distance_from_outline_to_wall));
}
if (connect_polygons)
{
// remove too small polygons
coord_t snap_distance = infill_line_width * 2; // polygons with a span of max 1 * nozzle_size are too small
auto it = std::remove_if(result_polygons.begin(), result_polygons.end(), [snap_distance](PolygonRef poly) { return poly.shorterThan(snap_distance); });
result_polygons.erase(it, result_polygons.end());
PolygonConnector connector(infill_line_width, infill_line_width * 3 / 2);
connector.add(result_polygons);
result_polygons = connector.connect();
}
}
void Infill::_generate(Polygons& result_polygons, Polygons& result_lines, const SierpinskiFillProvider* cross_fill_provider, const SliceMeshStorage* mesh)
{
if (in_outline.empty()) return;
if (line_distance == 0) return;
if (pattern == EFillMethod::ZIG_ZAG || (zig_zaggify && (pattern == EFillMethod::LINES || pattern == EFillMethod::TRIANGLES || pattern == EFillMethod::GRID || pattern == EFillMethod::CUBIC || pattern == EFillMethod::TETRAHEDRAL || pattern == EFillMethod::QUARTER_CUBIC || pattern == EFillMethod::TRIHEXAGON || pattern == EFillMethod::GYROID)))
{
outline_offset -= infill_line_width / 2; // the infill line zig zag connections must lie next to the border, not on it
}
switch(pattern)
{
case EFillMethod::GRID:
generateGridInfill(result_lines);
break;
case EFillMethod::LINES:
generateLineInfill(result_lines, line_distance, fill_angle, 0);
break;
case EFillMethod::CUBIC:
generateCubicInfill(result_lines);
break;
case EFillMethod::TETRAHEDRAL:
generateTetrahedralInfill(result_lines);
break;
case EFillMethod::QUARTER_CUBIC:
generateQuarterCubicInfill(result_lines);
break;
case EFillMethod::TRIANGLES:
generateTriangleInfill(result_lines);
break;
case EFillMethod::TRIHEXAGON:
generateTrihexagonInfill(result_lines);
break;
case EFillMethod::CONCENTRIC:
generateConcentricInfill(result_polygons, line_distance);
break;
case EFillMethod::ZIG_ZAG:
generateZigZagInfill(result_lines, line_distance, fill_angle);
break;
case EFillMethod::CUBICSUBDIV:
if (!mesh)
{
logError("Cannot generate Cubic Subdivision infill without a mesh!\n");
break;
}
generateCubicSubDivInfill(result_lines, *mesh);
break;
case EFillMethod::CROSS:
case EFillMethod::CROSS_3D:
if (!cross_fill_provider)
{
logError("Cannot generate Cross infill without a cross fill provider!\n");
break;
}
generateCrossInfill(*cross_fill_provider, result_polygons, result_lines);
break;
case EFillMethod::GYROID:
generateGyroidInfill(result_lines);
break;
default:
logError("Fill pattern has unknown value.\n");
break;
}
//TODO: The connected lines algorithm is only available for linear-based infill, for now.
//We skip ZigZag, Cross and Cross3D because they have their own algorithms. Eventually we want to replace all that with the new algorithm.
//Cubic Subdivision ends lines in the center of the infill so it won't be effective.
if (zig_zaggify && (pattern == EFillMethod::LINES || pattern == EFillMethod::TRIANGLES || pattern == EFillMethod::GRID || pattern == EFillMethod::CUBIC || pattern == EFillMethod::TETRAHEDRAL || pattern == EFillMethod::QUARTER_CUBIC || pattern == EFillMethod::TRIHEXAGON))
{
//The list should be empty because it will be again filled completely. Otherwise might have double lines.
result_lines.clear();
connectLines(result_lines);
}
crossings_on_line.clear();
}
void Infill::multiplyInfill(Polygons& result_polygons, Polygons& result_lines)
{
if (pattern == EFillMethod::CONCENTRIC)
{
result_polygons = result_polygons.processEvenOdd(); // make into areas
}
bool odd_multiplier = infill_multiplier % 2 == 1;
coord_t offset = (odd_multiplier)? infill_line_width : infill_line_width / 2;
if (zig_zaggify && !odd_multiplier)
{
outline_offset -= infill_line_width / 2; // the infill line zig zag connections must lie next to the border, not on it
}
const Polygons outline = in_outline.offset(outline_offset);
// Get the first offset these are mirrored from the original center line
Polygons result;
Polygons first_offset;
{
const Polygons first_offset_lines = result_lines.offsetPolyLine(offset); // make lines on both sides of the input lines
const Polygons first_offset_polygons_inward = result_polygons.offset(-offset); // make lines on the inside of the input polygons
const Polygons first_offset_polygons_outward = result_polygons.offset(offset); // make lines on the other side of the input polygons
const Polygons first_offset_polygons = first_offset_polygons_outward.difference(first_offset_polygons_inward);
first_offset = first_offset_lines.unionPolygons(first_offset_polygons); // usually we only have either lines or polygons, but this code also handles an infill pattern which generates both
if (zig_zaggify)
{
first_offset = outline.difference(first_offset);
}
}
result.add(first_offset);
// Create the additional offsets from the first offsets, generated earlier, the direction of these offsets is
// depended on whether these lines should be connected or not.
if (infill_multiplier > 3)
{
Polygons reference_polygons = first_offset;
const size_t multiplier = static_cast<size_t>(infill_multiplier / 2);
const int extra_offset = mirror_offset ? -infill_line_width : infill_line_width;
for (size_t infill_line = 1; infill_line < multiplier; ++infill_line)
{
Polygons extra_polys = reference_polygons.offset(extra_offset);
result.add(extra_polys);
reference_polygons = std::move(extra_polys);
}
}
if (zig_zaggify)
{
result = result.intersection(outline);
}
// Remove the original center lines when there are an even number of lines required.
if (!odd_multiplier)
{
result_polygons.clear();
result_lines.clear();
}
result_polygons.add(result);
if (!zig_zaggify)
{
for (PolygonRef poly : result_polygons)
{ // make polygons into polylines
if (poly.empty())
{
continue;
}
poly.add(poly[0]);
}
Polygons polylines = outline.intersectionPolyLines(result_polygons);
for (PolygonRef polyline : polylines)
{
Point last_point = no_point;
for (Point point : polyline)
{
Polygon line;
if (last_point != no_point)
{
line.add(last_point);
line.add(point);
result_lines.add(line);
}
last_point = point;
}
}
result_polygons.clear(); // the output should only contain polylines
}
}
void Infill::generateGyroidInfill(Polygons& result_lines)
{
GyroidInfill::generateTotalGyroidInfill(result_lines, zig_zaggify, outline_offset + infill_overlap, infill_line_width, line_distance, in_outline, z);
}
void Infill::generateConcentricInfill(Polygons& result, int inset_value)
{
Polygons first_concentric_wall = in_outline.offset(outline_offset + infill_overlap - line_distance + infill_line_width / 2); // - infill_line_width / 2 cause generateConcentricInfill expects [outline] to be the outer most polygon instead of the outer outline
if (perimeter_gaps)
{
const Polygons inner = first_concentric_wall.offset(infill_line_width / 2 + perimeter_gaps_extra_offset);
const Polygons gaps_here = in_outline.difference(inner);
perimeter_gaps->add(gaps_here);
}
generateConcentricInfill(first_concentric_wall, result, inset_value);
}
void Infill::generateConcentricInfill(Polygons& first_concentric_wall, Polygons& result, int inset_value)
{
result.add(first_concentric_wall);
Polygons* prev_inset = &first_concentric_wall;
Polygons next_inset;
Polygons new_inset; // This intermediate inset variable is needed because prev_inset is referencing
while (prev_inset->size() > 0)
{
new_inset = prev_inset->offset(-inset_value);
new_inset.simplify();
result.add(new_inset);
if (perimeter_gaps)
{
const Polygons outer = prev_inset->offset(-infill_line_width / 2 - perimeter_gaps_extra_offset);
const Polygons inner = new_inset.offset(infill_line_width / 2);
const Polygons gaps_here = outer.difference(inner);
perimeter_gaps->add(gaps_here);
}
// This operation helps to prevent the variable "prev_inset" changes whenever next_inset changes
next_inset = new_inset;
prev_inset = &next_inset;
}
std::reverse(std::begin(result), std::end(result));
}
void Infill::generateGridInfill(Polygons& result)
{
generateLineInfill(result, line_distance, fill_angle, 0);
generateLineInfill(result, line_distance, fill_angle + 90, 0);
}
void Infill::generateCubicInfill(Polygons& result)
{
const coord_t shift = one_over_sqrt_2 * z;
generateLineInfill(result, line_distance, fill_angle, shift);
generateLineInfill(result, line_distance, fill_angle + 120, shift);
generateLineInfill(result, line_distance, fill_angle + 240, shift);
}
void Infill::generateTetrahedralInfill(Polygons& result)
{
generateHalfTetrahedralInfill(0.0, 0, result);
generateHalfTetrahedralInfill(0.0, 90, result);
}
void Infill::generateQuarterCubicInfill(Polygons& result)
{
generateHalfTetrahedralInfill(0.0, 0, result);
generateHalfTetrahedralInfill(0.5, 90, result);
}
void Infill::generateHalfTetrahedralInfill(float pattern_z_shift, int angle_shift, Polygons& result)
{
const coord_t period = line_distance * 2;
coord_t shift = coord_t(one_over_sqrt_2 * (z + pattern_z_shift * period * 2)) % period;
shift = std::min(shift, period - shift); // symmetry due to the fact that we are applying the shift in both directions
shift = std::min(shift, period / 2 - infill_line_width / 2); // don't put lines too close to each other
shift = std::max(shift, infill_line_width / 2); // don't put lines too close to each other
generateLineInfill(result, period, fill_angle + angle_shift, shift);
generateLineInfill(result, period, fill_angle + angle_shift, -shift);
}
void Infill::generateTriangleInfill(Polygons& result)
{
generateLineInfill(result, line_distance, fill_angle, 0);
generateLineInfill(result, line_distance, fill_angle + 60, 0);
generateLineInfill(result, line_distance, fill_angle + 120, 0);
}
void Infill::generateTrihexagonInfill(Polygons& result)
{
generateLineInfill(result, line_distance, fill_angle, 0);
generateLineInfill(result, line_distance, fill_angle + 60, 0);
generateLineInfill(result, line_distance, fill_angle + 120, line_distance / 2);
}
void Infill::generateCubicSubDivInfill(Polygons& result, const SliceMeshStorage& mesh)
{
Polygons uncropped;
mesh.base_subdiv_cube->generateSubdivisionLines(z, uncropped);
addLineSegmentsInfill(result, uncropped);
}
void Infill::generateCrossInfill(const SierpinskiFillProvider& cross_fill_provider, Polygons& result_polygons, Polygons& result_lines)
{
outline_offset += infill_overlap;
if (zig_zaggify)
{
outline_offset += -infill_line_width / 2;
}
Polygons outline = in_outline.offset(outline_offset);
Polygon cross_pattern_polygon = cross_fill_provider.generate(pattern, z, infill_line_width, pocket_size);
if (cross_pattern_polygon.empty())
{
return;
}
if (zig_zaggify)
{
Polygons cross_pattern_polygons;
cross_pattern_polygons.add(cross_pattern_polygon);
result_polygons.add(outline.intersection(cross_pattern_polygons));
}
else
{
// make the polyline closed in order to handle cross_pattern_polygon as a polyline, rather than a closed polygon
cross_pattern_polygon.add(cross_pattern_polygon[0]);
Polygons cross_pattern_polygons;
cross_pattern_polygons.add(cross_pattern_polygon);
Polygons poly_lines = outline.intersectionPolyLines(cross_pattern_polygons);
for (PolygonRef poly_line : poly_lines)
{
for (unsigned int point_idx = 1; point_idx < poly_line.size(); point_idx++)
{
result_lines.addLine(poly_line[point_idx - 1], poly_line[point_idx]);
}
}
}
}
void Infill::addLineSegmentsInfill(Polygons& result, Polygons& input)
{
ClipperLib::PolyTree interior_segments_tree;
in_outline.offset(infill_overlap).lineSegmentIntersection(input, interior_segments_tree);
ClipperLib::Paths interior_segments;
ClipperLib::OpenPathsFromPolyTree(interior_segments_tree, interior_segments);
for (size_t idx = 0; idx < interior_segments.size(); idx++)
{
result.addLine(interior_segments[idx][0], interior_segments[idx][1]);
}
}
void Infill::addLineInfill(Polygons& result, const PointMatrix& rotation_matrix, const int scanline_min_idx, const int line_distance, const AABB boundary, std::vector<std::vector<coord_t>>& cut_list, coord_t shift)
{
auto compare_coord_t = [](const void* a, const void* b)
{
coord_t n = (*(coord_t*)a) - (*(coord_t*)b);
if (n < 0)
{
return -1;
}
if (n > 0)
{
return 1;
}
return 0;
};
unsigned int scanline_idx = 0;
for(coord_t x = scanline_min_idx * line_distance + shift; x < boundary.max.X; x += line_distance)
{
if (scanline_idx >= cut_list.size())
{
break;
}
std::vector<coord_t>& crossings = cut_list[scanline_idx];
qsort(crossings.data(), crossings.size(), sizeof(coord_t), compare_coord_t);
for(unsigned int crossing_idx = 0; crossing_idx + 1 < crossings.size(); crossing_idx += 2)
{
if (crossings[crossing_idx + 1] - crossings[crossing_idx] < infill_line_width / 5)
{ // segment is too short to create infill
continue;
}
//We have to create our own lines when they are not created by the method connectLines.
if (!zig_zaggify || pattern == EFillMethod::ZIG_ZAG || pattern == EFillMethod::LINES)
{
result.addLine(rotation_matrix.unapply(Point(x, crossings[crossing_idx])), rotation_matrix.unapply(Point(x, crossings[crossing_idx + 1])));
}
}
scanline_idx += 1;
}
}
coord_t Infill::getShiftOffsetFromInfillOriginAndRotation(const double& infill_rotation)
{
if (infill_origin.X != 0 || infill_origin.Y != 0)
{
const double rotation_rads = infill_rotation * M_PI / 180;
return infill_origin.X * std::cos(rotation_rads) - infill_origin.Y * std::sin(rotation_rads);
}
return 0;
}
void Infill::generateLineInfill(Polygons& result, int line_distance, const double& infill_rotation, coord_t shift)
{
shift += getShiftOffsetFromInfillOriginAndRotation(infill_rotation);
PointMatrix rotation_matrix(infill_rotation);
NoZigZagConnectorProcessor lines_processor(rotation_matrix, result);
bool connected_zigzags = false;
generateLinearBasedInfill(outline_offset, result, line_distance, rotation_matrix, lines_processor, connected_zigzags, shift);
}
void Infill::generateZigZagInfill(Polygons& result, const coord_t line_distance, const double& infill_rotation)
{
const coord_t shift = getShiftOffsetFromInfillOriginAndRotation(infill_rotation);
PointMatrix rotation_matrix(infill_rotation);
ZigzagConnectorProcessor zigzag_processor(rotation_matrix, result, use_endpieces, connected_zigzags, skip_some_zags, zag_skip_count);
generateLinearBasedInfill(outline_offset, result, line_distance, rotation_matrix, zigzag_processor, connected_zigzags, shift);
}
/*
* algorithm:
* 1. for each line segment of each polygon:
* store the intersections of that line segment with all scanlines in a mapping (vector of vectors) from scanline to intersections
* (zigzag): add boundary segments to result
* 2. for each scanline:
* sort the associated intersections
* and connect them using the even-odd rule
*
* rough explanation of the zigzag algorithm:
* while walking around (each) polygon (1.)
* if polygon intersects with even scanline
* start boundary segment (add each following segment to the [result])
* when polygon intersects with a scanline again
* stop boundary segment (stop adding segments to the [result])
* (see infill/ZigzagConnectorProcessor.h for actual implementation details)
*
*
* we call the areas between two consecutive scanlines a 'scansegment'.
* Scansegment x is the area between scanline x and scanline x+1
* Edit: the term scansegment is wrong, since I call a boundary segment leaving from an even scanline to the left as belonging to an even scansegment,
* while I also call a boundary segment leaving from an even scanline toward the right as belonging to an even scansegment.
*/
void Infill::generateLinearBasedInfill(const int outline_offset, Polygons& result, const int line_distance, const PointMatrix& rotation_matrix, ZigzagConnectorProcessor& zigzag_connector_processor, const bool connected_zigzags, coord_t extra_shift)
{
if (line_distance == 0)
{
return;
}
if (in_outline.size() == 0)
{
return;
}
coord_t shift = extra_shift + this->shift;
if (outline_offset != 0 && perimeter_gaps)
{
const Polygons gaps_outline = in_outline.offset(outline_offset + infill_line_width / 2 + perimeter_gaps_extra_offset);
perimeter_gaps->add(in_outline.difference(gaps_outline));
}
Polygons outline = in_outline.offset(outline_offset + infill_overlap);
if (outline.size() == 0)
{
return;
}
//TODO: Currently we find the outline every time for each rotation.
//We should compute it only once and rotate that accordingly.
//We'll also have the guarantee that they have the same size every time.
//Currently we assume that the above operations are all rotation-invariant,
//which they aren't if vertices fall on the same coordinate due to rounding.
crossings_on_line.resize(outline.size()); //One for each polygon.
outline.applyMatrix(rotation_matrix);
if (shift < 0)
{
shift = line_distance - (-shift) % line_distance;
}
else
{
shift = shift % line_distance;
}
AABB boundary(outline);
int scanline_min_idx = computeScanSegmentIdx(boundary.min.X - shift, line_distance);
int line_count = computeScanSegmentIdx(boundary.max.X - shift, line_distance) + 1 - scanline_min_idx;
std::vector<std::vector<coord_t>> cut_list; // mapping from scanline to all intersections with polygon segments
for(int scanline_idx = 0; scanline_idx < line_count; scanline_idx++)
{
cut_list.push_back(std::vector<coord_t>());
}
//When we find crossings, keep track of which crossing belongs to which scanline and to which polygon line segment.
//Then we can later join two crossings together to form lines and still know what polygon line segments that infill line connected to.
struct Crossing
{
Crossing(Point coordinate, size_t polygon_index, size_t vertex_index): coordinate(coordinate), polygon_index(polygon_index), vertex_index(vertex_index) {};
Point coordinate;
size_t polygon_index;
size_t vertex_index;
bool operator <(const Crossing& other) const //Crossings will be ordered by their Y coordinate so that they get ordered along the scanline.
{
return coordinate.Y < other.coordinate.Y;
}
};
std::vector<std::vector<Crossing>> crossings_per_scanline; //For each scanline, a list of crossings.
const int min_scanline_index = computeScanSegmentIdx(boundary.min.X - shift, line_distance) + 1;
const int max_scanline_index = computeScanSegmentIdx(boundary.max.X - shift, line_distance) + 1;
crossings_per_scanline.resize(max_scanline_index - min_scanline_index);
for(size_t poly_idx = 0; poly_idx < outline.size(); poly_idx++)
{
PolygonRef poly = outline[poly_idx];
crossings_on_line[poly_idx].resize(poly.size()); //One for each line in this polygon.
Point p0 = poly.back();
zigzag_connector_processor.registerVertex(p0); // always adds the first point to ZigzagConnectorProcessorEndPieces::first_zigzag_connector when using a zigzag infill type
for(size_t point_idx = 0; point_idx < poly.size(); point_idx++)
{
Point p1 = poly[point_idx];
if (p1.X == p0.X)
{
zigzag_connector_processor.registerVertex(p1);
// TODO: how to make sure it always adds the shortest line? (in order to prevent overlap with the zigzag connectors)
// note: this is already a problem for normal infill, but hasn't really bothered anyone so far.
p0 = p1;
continue;
}
int scanline_idx0;
int scanline_idx1;
// this way of handling the indices takes care of the case where a boundary line segment ends exactly on a scanline:
// in case the next segment moves back from that scanline either 2 or 0 scanline-boundary intersections are created
// otherwise only 1 will be created, counting as an actual intersection
int direction = 1;
if (p0.X < p1.X)
{
scanline_idx0 = computeScanSegmentIdx(p0.X - shift, line_distance) + 1; // + 1 cause we don't cross the scanline of the first scan segment
scanline_idx1 = computeScanSegmentIdx(p1.X - shift, line_distance); // -1 cause the vertex point is handled in the next segment (or not in the case which looks like >)
}
else
{
direction = -1;
scanline_idx0 = computeScanSegmentIdx(p0.X - shift, line_distance); // -1 cause the vertex point is handled in the previous segment (or not in the case which looks like >)
scanline_idx1 = computeScanSegmentIdx(p1.X - shift, line_distance) + 1; // + 1 cause we don't cross the scanline of the first scan segment
}
for(int scanline_idx = scanline_idx0; scanline_idx != scanline_idx1 + direction; scanline_idx += direction)
{
int x = scanline_idx * line_distance + shift;
int y = p1.Y + (p0.Y - p1.Y) * (x - p1.X) / (p0.X - p1.X);
assert(scanline_idx - scanline_min_idx >= 0 && scanline_idx - scanline_min_idx < int(cut_list.size()) && "reading infill cutlist index out of bounds!");
cut_list[scanline_idx - scanline_min_idx].push_back(y);
Point scanline_linesegment_intersection(x, y);
zigzag_connector_processor.registerScanlineSegmentIntersection(scanline_linesegment_intersection, scanline_idx);
crossings_per_scanline[scanline_idx - min_scanline_index].emplace_back(scanline_linesegment_intersection, poly_idx, point_idx);
}
zigzag_connector_processor.registerVertex(p1);
p0 = p1;
}
zigzag_connector_processor.registerPolyFinished();
}
//Gather all crossings per scanline and find out which crossings belong together, then store them in crossings_on_line.
for (int scanline_index = min_scanline_index; scanline_index < max_scanline_index; scanline_index++)
{
std::sort(crossings_per_scanline[scanline_index - min_scanline_index].begin(), crossings_per_scanline[scanline_index - min_scanline_index].end()); //Sorts them by Y coordinate.
for (long crossing_index = 0; crossing_index < static_cast<long>(crossings_per_scanline[scanline_index - min_scanline_index].size()) - 1; crossing_index += 2) //Combine each 2 subsequent crossings together.
{
const Crossing& first = crossings_per_scanline[scanline_index - min_scanline_index][crossing_index];
const Crossing& second = crossings_per_scanline[scanline_index - min_scanline_index][crossing_index + 1];
//Avoid creating zero length crossing lines
const Point unrotated_first = rotation_matrix.unapply(first.coordinate);
const Point unrotated_second = rotation_matrix.unapply(second.coordinate);
if (unrotated_first == unrotated_second)
{
continue;
}
InfillLineSegment* new_segment = new InfillLineSegment(unrotated_first, first.vertex_index, first.polygon_index, unrotated_second, second.vertex_index, second.polygon_index);
//Put the same line segment in the data structure twice: Once for each of the polygon line segment that it crosses.
crossings_on_line[first.polygon_index][first.vertex_index].push_back(new_segment);
crossings_on_line[second.polygon_index][second.vertex_index].push_back(new_segment);
}
}
if (cut_list.size() == 0)
{
return;
}
if (connected_zigzags && cut_list.size() == 1 && cut_list[0].size() <= 2)
{
return; // don't add connection if boundary already contains whole outline!
}
addLineInfill(result, rotation_matrix, scanline_min_idx, line_distance, boundary, cut_list, shift);
}
void Infill::connectLines(Polygons& result_lines)
{
//TODO: We're reconstructing the outline here. We should store it and compute it only once.
Polygons outline = in_outline.offset(outline_offset + infill_overlap);
UnionFind<InfillLineSegment*> connected_lines; //Keeps track of which lines are connected to which.
for (std::vector<std::vector<InfillLineSegment*>>& crossings_on_polygon : crossings_on_line)
{
for (std::vector<InfillLineSegment*>& crossings_on_polygon_segment : crossings_on_polygon)
{
for (InfillLineSegment* infill_line : crossings_on_polygon_segment)
{
if (connected_lines.find(infill_line) == (size_t)-1)
{
connected_lines.add(infill_line); //Put every line in there as a separate set.
}
}
}
}
for (size_t polygon_index = 0; polygon_index < outline.size(); polygon_index++)
{
if (outline[polygon_index].empty())
{
continue;
}
InfillLineSegment* previous_crossing = nullptr; //The crossing that we should connect to. If nullptr, we have been skipping until we find the next crossing.
InfillLineSegment* previous_segment = nullptr; //The last segment we were connecting while drawing a line along the border.
Point vertex_before = outline[polygon_index].back();
for (size_t vertex_index = 0; vertex_index < outline[polygon_index].size(); vertex_index++)
{
Point vertex_after = outline[polygon_index][vertex_index];
//Sort crossings on every line by how far they are from their initial point.
struct CompareByDistance
{
CompareByDistance(Point to_point, size_t polygon_index, size_t vertex_index): to_point(to_point), polygon_index(polygon_index), vertex_index(vertex_index) {};
Point to_point; //The distance to this point is compared.
size_t polygon_index; //The polygon which the vertex_index belongs to.
size_t vertex_index; //The vertex indicating a line segment. This determines which endpoint of each line should be used.
inline bool operator ()(InfillLineSegment*& left_hand_side, InfillLineSegment*& right_hand_side) const
{
//Find the two endpoints that are relevant.
const Point left_hand_point = (left_hand_side->start_segment == vertex_index && left_hand_side->start_polygon == polygon_index) ? left_hand_side->start : left_hand_side->end;
const Point right_hand_point = (right_hand_side->start_segment == vertex_index && right_hand_side->start_polygon == polygon_index) ? right_hand_side->start : right_hand_side->end;
return vSize(left_hand_point - to_point) < vSize(right_hand_point - to_point);
}
};
std::sort(crossings_on_line[polygon_index][vertex_index].begin(), crossings_on_line[polygon_index][vertex_index].end(), CompareByDistance(vertex_before, polygon_index, vertex_index));
for (InfillLineSegment* crossing : crossings_on_line[polygon_index][vertex_index])
{
if (!previous_crossing) //If we're not yet drawing, then we have been trying to find the next vertex. We found it! Let's start drawing.
{
previous_crossing = crossing;
previous_segment = crossing;
}
else
{
const size_t crossing_handle = connected_lines.find(crossing);
assert (crossing_handle != (size_t)-1);
const size_t previous_crossing_handle = connected_lines.find(previous_crossing);
assert (previous_crossing_handle != (size_t)-1);
if (crossing_handle == previous_crossing_handle) //These two infill lines are already connected. Don't create a loop now. Continue connecting with the next crossing.
{
continue;
}
//Join two infill lines together with a connecting line.
//Here the InfillLineSegments function as a linked list, so that they can easily be joined.
const Point previous_point = (previous_segment->start_segment == vertex_index && previous_segment->start_polygon == polygon_index) ? previous_segment->start : previous_segment->end;
const Point next_point = (crossing->start_segment == vertex_index && crossing->start_polygon == polygon_index) ? crossing->start : crossing->end;
InfillLineSegment* new_segment;
// If the segment is zero length, we avoid creating it but still want to connect the crossing with the previous segment
if (previous_point == next_point)
{
if (previous_segment->start_segment == vertex_index && previous_segment->start_polygon == polygon_index)
{
previous_segment->previous = crossing;
}
else
{
previous_segment->next = crossing;
}
new_segment = previous_segment;
}
else
{
new_segment = new InfillLineSegment(previous_point, vertex_index, polygon_index, next_point, vertex_index, polygon_index); //A connecting line between them.
new_segment->previous = previous_segment;
if (previous_segment->start_segment == vertex_index && previous_segment->start_polygon == polygon_index)
{
previous_segment->previous = new_segment;
}
else
{
previous_segment->next = new_segment;
}
new_segment->next = crossing;
}
if (crossing->start_segment == vertex_index && crossing->start_polygon == polygon_index)
{
crossing->previous = new_segment;
}
else
{
crossing->next = new_segment;
}
connected_lines.unite(crossing_handle, previous_crossing_handle);
previous_crossing = nullptr;
previous_segment = nullptr;
}
}
//Upon going to the next vertex, if we're drawing, put an extra vertex in our infill lines.
if (previous_crossing)
{
InfillLineSegment* new_segment;
if (vertex_index == previous_segment->start_segment && polygon_index == previous_segment->start_polygon)
{
if (previous_segment->start == vertex_after)
{
//Edge case when an infill line ends directly on top of vertex_after: We skip the extra connecting line segment, as that would be 0-length.
previous_segment = nullptr;
previous_crossing = nullptr;
}
else
{
new_segment = new InfillLineSegment(previous_segment->start, vertex_index, polygon_index, vertex_after, (vertex_index + 1) % outline[polygon_index].size(), polygon_index);
previous_segment->previous = new_segment;
new_segment->previous = previous_segment;
previous_segment = new_segment;
}
}
else
{
if (previous_segment->end == vertex_after)
{
//Edge case when an infill line ends directly on top of vertex_after: We skip the extra connecting line segment, as that would be 0-length.
previous_segment = nullptr;
previous_crossing = nullptr;
}
else
{
new_segment = new InfillLineSegment(previous_segment->end, vertex_index, polygon_index, vertex_after, (vertex_index + 1) % outline[polygon_index].size(), polygon_index);
previous_segment->next = new_segment;
new_segment->previous = previous_segment;
previous_segment = new_segment;
}
}
}
vertex_before = vertex_after;
}
}
//Save all lines, now connected, to the output.
std::unordered_set<size_t> completed_groups;
for (InfillLineSegment* infill_line : connected_lines)
{
const size_t group = connected_lines.find(infill_line);
if (completed_groups.find(group) != completed_groups.end()) //We already completed this group.
{
continue;
}
//Find where the polyline ends by searching through previous and next lines.
//Note that the "previous" and "next" lines don't necessarily match up though, because the direction while connecting infill lines was not yet known.
Point previous_vertex = infill_line->start; //Take one side arbitrarily to start from. This variable indicates the vertex that connects to the previous line.
InfillLineSegment* current_infill_line = infill_line;
while (current_infill_line->next && current_infill_line->previous) //Until we reached an endpoint.
{
const Point next_vertex = (previous_vertex == current_infill_line->start) ? current_infill_line->end : current_infill_line->start;
current_infill_line = (previous_vertex == current_infill_line->start) ? current_infill_line->next : current_infill_line->previous;
previous_vertex = next_vertex;
}
//Now go along the linked list of infill lines and output the infill lines to the actual result.
InfillLineSegment* old_line = current_infill_line;
const Point first_vertex = (!current_infill_line->previous) ? current_infill_line->start : current_infill_line->end;
previous_vertex = (!current_infill_line->previous) ? current_infill_line->end : current_infill_line->start;
current_infill_line = (first_vertex == current_infill_line->start) ? current_infill_line->next : current_infill_line->previous;
result_lines.addLine(first_vertex, previous_vertex);
delete old_line;
while (current_infill_line)
{
old_line = current_infill_line; //We'll delete this after we've traversed to the next line.
const Point next_vertex = (previous_vertex == current_infill_line->start) ? current_infill_line->end : current_infill_line->start; //Opposite side of the line.
current_infill_line = (previous_vertex == current_infill_line->start) ? current_infill_line->next : current_infill_line->previous;
result_lines.addLine(previous_vertex, next_vertex);
previous_vertex = next_vertex;
delete old_line;
}
completed_groups.insert(group);
}
}
bool Infill::InfillLineSegment::operator ==(const InfillLineSegment& other) const
{
return start == other.start && end == other.end;
}
}//namespace cura