-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathnerf_trajectory_optimization.py
287 lines (237 loc) · 9.16 KB
/
nerf_trajectory_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import casadi as cs
import matplotlib.pyplot as plt
import numpy as np
import torch
import l4casadi as l4c
from density_nerf import DensityNeRF
CASE = 1
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
def polynomial(n, n_eval):
"""Generates a symbolic function for a polynomial of degree n-1"""
# Polynomial symbolic function
coeffs = cs.MX.sym("coeffs", n, 3)
xi = cs.MX.sym("xi")
p = cs.MX.zeros(1, 3)
for k in range(n):
p += coeffs[k, :] * xi**k
v = cs.jacobian(p, xi).T
a = cs.jacobian(v, xi).T
j = cs.jacobian(a, xi).T
s = cs.jacobian(j, xi).T
f = cs.Function(
"f_poly",
[coeffs, xi],
[p, v, a, j, s],
["coeffs", "xi"],
["p", "v", "a", "j", "s"],
)
# evaluation function
p_eval = cs.MX.zeros(n_eval, 3)
v_eval = cs.MX.zeros(n_eval, 3)
a_eval = cs.MX.zeros(n_eval, 3)
j_eval = cs.MX.zeros(n_eval, 3)
s_eval = cs.MX.zeros(n_eval, 3)
xi_eval = np.linspace(0, 1, n_eval)
for k in range(n_eval):
p_eval[k, :] = f(coeffs=coeffs, xi=xi_eval[k])["p"]
v_eval[k, :] = f(coeffs=coeffs, xi=xi_eval[k])["v"]
a_eval[k, :] = f(coeffs=coeffs, xi=xi_eval[k])["a"]
j_eval[k, :] = f(coeffs=coeffs, xi=xi_eval[k])["j"]
s_eval[k, :] = f(coeffs=coeffs, xi=xi_eval[k])["s"]
f_eval = cs.Function(
"f_eval",
[coeffs],
[p_eval, v_eval, a_eval, j_eval, s_eval],
["coeffs"],
["p", "v", "a", "j", "s"],
)
return f, f_eval
def trajectory_generator_solver(n, n_eval, L, warmup, threshold):
# Decision variables and parameters
f_poly, f_eval = polynomial(n, n_eval)
x = cs.MX.sym("x", n, 2)
X = cs.horzcat(cs.MX.zeros(n), x)
params = cs.MX.sym("params", n_eval, 3)
x_init = params[0, :]
x_end = params[-1, :]
# Define NLP
f = 0
g = []
lbg = []
ubg = []
for k in range(n_eval):
poly = f_poly(coeffs=X, xi=k / (n_eval - 1))
pk = poly["p"]
sk = poly["s"]
if warmup:
f += cs.sum2((pk - params[k, :]) ** 2)
else:
# Optimize for minimum Snap.
f += cs.sum2(sk**2)
# While having a maximum density (1.) of the NeRF as constraint.
lk = L(pk)
g = cs.horzcat(g, lk)
lbg = cs.horzcat(lbg, cs.DM([-10e32]).T)
ubg = cs.horzcat(ubg, cs.DM([threshold]).T)
# Spatial bounds
g = cs.horzcat(g, pk[1:])
lbg = cs.horzcat(lbg, cs.DM([-1, -0.3]).T)
ubg = cs.horzcat(ubg, cs.DM([1.2, 1.0]).T)
# Initial and final states
eps = 0
for key, init, end in zip(
["p"],
[x_init],
[x_end],
):
g = cs.horzcat(g, f_poly(coeffs=X, xi=0)[key] - init)
lbg = cs.horzcat(lbg, -cs.DM([eps, eps, eps]).T)
ubg = cs.horzcat(ubg, cs.DM([eps, eps, eps]).T)
g = cs.horzcat(g, f_poly(coeffs=X, xi=1)[key] - end)
lbg = cs.horzcat(lbg, -cs.DM([eps, eps, eps]).T)
ubg = cs.horzcat(ubg, cs.DM([eps, eps, eps]).T)
# Generate solver
x_nlp = cs.reshape(x, n * 2, 1)
p_nlp = cs.reshape(params, n_eval * 3, 1)
nlp_dict = {
"x": x_nlp,
"f": f,
"g": g,
"p": p_nlp,
}
if warmup:
nlp_opts = {
"ipopt.linear_solver": "mumps",
"ipopt.sb": "yes",
"ipopt.max_iter": 100,
"ipopt.print_level": 5,
"print_time": False,
}
else:
nlp_opts = {
# High barrier parameter to adhere to warmstart.
"ipopt.mu_init": 1e-4,
"ipopt.barrier_tol_factor": 1e6,
"ipopt.linear_solver": "mumps",
"ipopt.sb": "yes",
"ipopt.max_iter": 100,
"ipopt.print_level": 5,
"print_time": False,
}
nlp_solver = cs.nlpsol("nerf_trajectory_optimizer", "ipopt", nlp_dict, nlp_opts)
solver = {"solver": nlp_solver, "lbg": lbg, "ubg": ubg}
return solver
def main():
n = 9
n_eval = 150
optimization_threshold = 1.
viz_threshold = 10.
if CASE == 1: # case 1
p_start = np.array([0.0, -0.8, -0.2])
p_goal = np.array([-0.0, 1.2, 0.8])
elif CASE == 2: # case 2
p_start = np.array([0.0, -0.8, -0.2])
p_goal = np.array([-0.0, 1.2, -0.2])
elif CASE == 3: # case 3
p_start = np.array([0.0, -1, 1])
p_goal = np.array([-0.0, 1.2, -0.2])
else:
raise ValueError("Invalid case.")
# --------------------------------- Load NERF -------------------------------- #
model = DensityNeRF()
model_path = os.path.join(os.path.dirname(__file__), "nerf_model.tar")
model.load_state_dict(
torch.load(model_path, map_location="cpu")["network_fn_state_dict"],
strict=False,
)
# -------------------------- Create L4CasADi Module -------------------------- #
l4c_nerf = l4c.L4CasADi(model, scripting=False)
# ---------------------------------------------------------------------------- #
# NLP warmup #
# ---------------------------------------------------------------------------- #
# --------------------------- Piecewise linear path -------------------------- #
if CASE == 1:
points = np.array(
[[0, -0.8, -0.2], [0, -0.5, 0.4], [0, 0, 0.8], [0, 0.75, 0.3], [0, 1.2, 0.8]]
)
elif CASE == 2:
points = np.array(
[[0, -0.8, -0.2], [0, -0.5, 0.4], [0, 0, 0.8], [0, 0.75, 0.4], [0, 1.2, -0.2]]
)
elif CASE == 3:
points = np.array(
[[0.0, -1, 1], [0, -0.85, 0.4], [0, 0, 0.7], [0, 0.75, 0.45], [0, 1.2, -0.2]]
)
else:
raise ValueError("Invalid case")
dists = np.linalg.norm(np.diff(points, axis=0), axis=1)
n_eval_points = np.squeeze(dists / np.sum(dists) * n_eval).astype(int)
if np.sum(n_eval_points) != n_eval:
n_eval_points[-1] += n_eval - np.sum(n_eval_points)
piecewise_points = np.zeros((n_eval, 3))
for k in range(len(points) - 1):
piecewise_points[
np.sum(n_eval_points[:k]) : np.sum(n_eval_points[: k + 1]), :
] = np.linspace(points[k], points[k + 1], n_eval_points[k] + 1)[:-1, :]
# --------------------------------- Solve NLP -------------------------------- #
# Load solver
nlp_warm = trajectory_generator_solver(n, n_eval, l4c_nerf, warmup=True, threshold=optimization_threshold)
# solve nlp
params_flat = piecewise_points.T.flatten() # update nlp to take this as input!
sol = nlp_warm["solver"](p=params_flat, lbg=nlp_warm["lbg"], ubg=nlp_warm["ubg"])
# --------------------------------- Evaluate --------------------------------- #
# Extract and evaluate solution
coeffs_warm = np.squeeze(sol["x"]).reshape(2, n).T
coeffs_warm = np.hstack([np.zeros((n, 1)), coeffs_warm])
_, f_eval = polynomial(n, n_eval)
# ---------------------------------------------------------------------------- #
# Collision free NLP #
# ---------------------------------------------------------------------------- #
# Load solver
nlp = trajectory_generator_solver(n, n_eval, l4c_nerf, warmup=False, threshold=optimization_threshold)
# Solve nlp
x_init = coeffs_warm[:, 1:].T.flatten()
sol = nlp["solver"](x0=x_init, p=params_flat, lbg=nlp["lbg"], ubg=nlp["ubg"])
# --------------------------------- Evaluate --------------------------------- #
# Extract and evaluate solution
coeffs_sol = np.squeeze(sol["x"]).reshape(2, n).T
coeffs_sol = np.hstack([np.zeros((n, 1)), coeffs_sol])
_, f_eval = polynomial(n, n_eval)
p_eval = np.squeeze(f_eval(coeffs=coeffs_sol)["p"])
p_sol = p_eval.copy()
# ---------------------------------------------------------------------------- #
# Visualize #
# ---------------------------------------------------------------------------- #
meshgrid = torch.meshgrid(
torch.linspace(0, 0, 1),
torch.linspace(-1.0, 1.2, 200),
torch.linspace(-0.5, 1, 200),
indexing='ij'
)
points = torch.stack(meshgrid, dim=-1).reshape(-1, 3)
with torch.no_grad():
density = model(points).detach()[..., 0]
points = points.numpy()
with torch.no_grad():
density_sol = model(torch.tensor(p_sol, dtype=torch.float32)).detach()[..., 0]
print(f"Maximum Density in Solution: {density_sol.max()} < Threshold {optimization_threshold:.2f}")
ax = plt.figure().add_subplot(111)
ax.plot(p_sol[:, 1], p_sol[:, 2], "-", color=(0.8, 0.12, 0.12), linewidth=3)
g = ax.scatter(
points[density > viz_threshold][:, 1],
points[density > viz_threshold][:, 2],
cmap="jet",
c=density[density > viz_threshold],
s=0.5,
)
cb = plt.colorbar(g, ax=ax)
ax.scatter(p_start[1], p_start[2], color=(0.12, 0.12, 0.8), s=50., zorder=10)
ax.scatter(p_goal[1], p_goal[2], color=(0.12, 0.8, 0.12), s=50., zorder=10)
cb.set_label('NeRF Density')
plt.xticks([], [])
plt.yticks([], [])
plt.tight_layout()
plt.show()
if __name__ == '__main__':
main()