-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.js
739 lines (539 loc) · 23 KB
/
app.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
// TYPES //
// PRIMITIVE TYPES //
// undefined /// undeclared
// string /// null
// number /// function
// boolean /// array
// object /// bigint
// symbol
// var v;
// typeof v; //"undefined"
// v = '1';
// typeof v; //'string'
// v = 2;
// typeof v; //'Number'
// v = true;
// typeof v; //'Boolean'
// v = {};
// typeof v; //"Object"
// v = Symbol();
// typeof v; //"symbol"
// typeof doesnotExist; //"undefined"
// var v = null;
// typeof v //"object"
// v = function(){};
// typeof v; //"function"
// v = [1,2,3]
// typeof v; //'object'
// var v = 42n
// // or //
// var v = BigInt(42)
// console.log(typeof v); //"bigint"
// Negative Zero //
// var trendrate = -0
// trendrate === -0 // true
// trendrate.toString() // '0' OOPS
// trendrate === 0 // true OOPS
// Fundamental Objects //
// Built-in Objects
// Native Functions
// Use new Dont use:
// Object() // String()
// Array() //Number()
// Function() // Boolean()
// Date()
// RegExp()
// Error();
// let yesterday = new Date("July 6, 2023")
// console.log(yesterday.toUTCString());
// ABSTRACT OPERATIONS > TOSTRING() > TONUMBER > TOBOOLEAN //
// when we use toNumber abstract operation we get like this answear
// "" - 0
// "0xaf" - 175
// "0" - 0
// "-0" - -0
// "009" - 9
// "3.14159" - 3.14159
// "0." - 0
// ".0" - 0
// "." - NaN
// [""] > 0
// ["0"] > 0
// ["-0"] > -0
// [null] > 0
// [undefined] > 0
// [1,2,3] > NaN
// [[[[]]]] > 0
// TOBOOLEAN ABSTRACT OPERATIONS //
// FALSY ------ TRUTHY //
// 0,-0 "foo"
// null 23
// NaN {a:1}
// false true
// undefined function(){}
// ... also it is more truthy value
// Coercion: Corner Cases List //
// console.log(Number("")); // 0
// Number(" \t\n"); // 0
// Number(null); // 0
// Number(undefined); // NaN
// Number( [] ); // 0
// Number( [1,2,3] ); //NaN
// Number( [null] ); // 0
// Number( [undefined] ); // 0
// Number( {} ); // NaN
// String( -0 ) // "0"
// String( null ) // "null"
// String( undefined ) // "undefined"
// String( [null] ) // " "
// String( [undefined] ) // " "
// Boolean( new Boolean(false) ) // "true"
// Coercion Exercises
// function isValidName(name) {
// if (typeof name == "string" && name.trim().length >= 3) {
// return true
// }
// return false;
// }
// function houseAttended(attended, length) {
// if (typeof attended == 'string' && attended.trim() != "") {
// attended = Number(attended)
// }
// if (typeof length == 'string' && length.trim() != "") {
// length = Number(length)
// }
// if (
// typeof attended == 'number' &&
// typeof length == 'string' &&
// attended >= 0 &&
// length >= 0 &&
// Number.isInteger(attended) &&
// Number.isInteger(length) &&
// attended <= length
// ) {
// return true
// }
// return false;
// }
// EQUALITY //
// == VS === //
// == allows coercion (types different) == COERCIVE EQUALITY
// === disallows coercion (types same) === NON-COERCIVE EQUALITY
// let x = null;
// let y = undefined;
// console.log(x == y);
// == Summary
// If the types are same : ===
// If null or undefined: equal
// If non-primitives: ToPrimitive
// Prefer: ToNumber
// Double Equals Corner cases
// [] == ![] > true ?!!!! wat!!
// var workStudents = []
// var workStudents1 = []
// if(workStudents == !workStudents1) let me show how algorith works
// if([] == false)
// if("" == false)
// if(0 == false)
// if(0 == 0)
//this is how algorithm works
// DOUBLE EQUALS CORNER CASES WITH BOOLEANS:
// var workStudents = []
// if(workStudents){
// // answer will be true
// }
// if(workStudents == true){
// // here answer will be false there is the corner case with booleans :(
// }
// if(workStudents == false){
// //but there will be false answer :(
// }
// how we can avoid corner cases with Double equals
// There is some tips you should AVOID
// 1: == with 0 or "" (or even " ")
// 2. == with non-primitivies
// 3. == true or == false: allow ToBoolean or use ===
// TYPESCRIPT AND FLOW //
// Benefits
// Catch type-related mistakes
// Communicate type intent
// Provide IDE feedback
// Caveats - Ogohlantirishlar
// Inferencing is best-guess, not a guarantee
// Annotations are optional
// Any part of application that is not typed introduces uncertanity
//let student: string = "Kyle"
// let student: number = 14;
// Pros // Cons
//They make types more obvious in code | They use "non-JS-standard" syntax (or code comments)
//Familiarity: they look like other language's type systems | They require* a build process, which raises the barrier to entry
//Extremely popular these days | Their sophistication can be intimidating to those without prior formal types experience
//They're very sophisticated and good at what they do | They focus more on "static types" (variables, parameters, returns, properties, etc) than value types
// | The only way to have confidence over the runtime behavior is to limit/eliminate dynamic typing
// SCOPE //
function teacher() { }
var myTeacher = function anotherTeacher() {
console.log(anotherTeacher)
}
console.log(teacher);
console.log(myTeacher);
console.log(anotherTeacher);//but there will be REFERENCE ERROR because anotherTeacher function is not in the "GLOBAL SCOPE"
// NAMED FUNCTION EXPRESSSIONS //
var clickhandler = function () { // <- anonymus Function expression
}
var keyhandler = function keyhandler() { // <- named Function expression
}
// NAMED FUNCTIONS BENEFITS:
// 1.Reliable function self-refernce (recursion,etc)
//2.More debuggable stack traces
// 3.More self-documenting code
//-----------------------------------------------------------------------------------------------------------------------------
//ARROW FUNCTIONS //
const numbers = [1, 2, 3, 4];
// Using traditional function as a callback
const squaredNumbers = numbers.map(function (num) {
return num * num;
});
// Using arrow function as a callback
const squaredNumbersArrow = numbers.map((num) => num * num);
console.log(squaredNumbers);
console.log(squaredNumbersArrow);
// Traditional Function
function sumArray(numbers) {
let sum = 0;
for (const num of numbers) {
sum += num;
}
return sum;
}
// Arrow Function with Block Statement
const sumArrayArrow = (numbers) => {
let sum = 0;
for (const num of numbers) {
sum += num;
}
return sum;
};
console.log(sumArray([1, 2, 3, 4])); // Output: 10
console.log(sumArrayArrow([1, 2, 3, 4])); // Output: 10
// --------------------------------------------------------------------------------------------------------
// (Named)declaration Function
// >
// Named Function Expression
// >
// Anonymus Function Expression <-- this means:FUnction Declaration has some benefits over a Named Function Expression but Named Function expression has Huge benefits over a Anonymus Function expression
// Function Declaration
function addNumbers(a, b) {
return a + b;
}
// Calling the function
const sum = addNumbers(5, 10);
console.log(sum); // Output: 15
//----------------------------------------------
// Named Function Expression
const multiplyNumbers = function multiply(a, b) {
return a * b;
};
// Calling the function
const product = multiplyNumbers(3, 7);
console.log(product); // Output: 21
//----------------------------------------------
// Anonymous Function Expression
const divideNumbers = function (a, b) {
return a / b;
};
// Calling the function
const result = divideNumbers(20, 5);
console.log(result); // Output: 4
// Some Solutions
// Examples for Function Declaration //
function getStudentById(studentId) {
return studentRecords.find(function matchId(record) {
return (record.id == studentId);
})
}
function printRecords(recordIds) {
var records = recordIds.map(getStudentById);
records.sort(function sortByNmaeAsc(record1, record2) {
if (record1.name < record2.name) {
return -1
}
else if (record1.name > record2.name) {
return 1
}
else {
return 0
}
})
records.forEach(function printRecord(record) {
console.log(`${record.name} (${record.id}): ${record.paid ? "Paid" : "Nor Paid"}`);
})
}
function paidStudentsEnrollement() {
var idsToEnroll = studentRecords.filter(function needsToEnroll(record) {
return (record.paid && !currentEnrollment.includes(record.id));
})
.map(function getStudentID(record) {
return record.id
})
return [...currentEnrollment, ...idsToEnroll];
}
function remindUnpaid(recordIds) {
var unPaidIds = recordIds.filter(function isunPaid(studentId) {
var record = getStudentById(studentId);
return !record.paid
})
printRecords(unPaidIds)
}
//---------------------
// Examples to Arrow Function
var getStudentById = studentId =>
studentRecords.find(
record => record.id == studentId
)
var printRecords = recordIds =>
recordIds.map(getStudentById)
.sort(
(record1, record2) => (record1.name < record2.name) ? -1 : (record1.name > record2.name) ? 1 : 0
)
.forEach(
record => console.log(`${record.name} (${record.id}): ${record.paid ? "Paid" : "Nor Paid"}`)
)
var paidStudentEnroll = () => [
...currentEnrollment,
...(
studentRecords.filter(
record => (record.paid && !currentEnrollment.includes(record.id))
)
.map(record => record.id)
)
];
var remindUnpaid = recordids =>
printRecords(
recordids.filter(
studentId => !getStudentById(studentId).paid
)
);
var currentEnrollment = [410, 105, 664, 375];
var studentRecords = [
{ id: 313, name: "Frank", paid: true },
{ id: 423, name: "Zuzy", paid: true },
{ id: 123, name: "John", paid: false },
{ id: 324, name: "Fry", paid: false },
{ id: 387, name: "Karol", paid: false },
{ id: 613, name: "Zuzu", paid: true },
{ id: 393, name: "Jony", paid: true },
{ id: 785, name: "Mac", paid: false },
{ id: 643, name: "Jack", paid: false },
{ id: 395, name: "Sui", paid: true },
{ id: 163, name: "Seea", paid: true },
{ id: 205, name: "Alan", paid: false },
]
// -----------------------------------------------------------------------------------------------------
// LEXICAL SCOPE AND DYNAMIC SCOPE //
function outer() {
const outerVariable = 'Outer';
function inner() {
const innerVariable = 'Inner';
console.log(innerVariable); // Output: Inner
console.log(outerVariable); // Output: Outer
}
inner();
}
outer();
// In this example, the inner function has access to both innerVariable and outerVariable.
// It can access innerVariable because it is declared within the same scope.
// It can access outerVariable because it is declared in the outer scope(in the outer function), which is the lexical parent of the inner function.
// Lexical scoping facilitates modular and maintainable code by providing clear boundaries for variable accessibility.
// It allows for predictable variable resolution, as the scope of a variable can be determined by examining the code's structure without the need to track runtime context or execution flow.
const globalVariable = 'Global';
function outer() {
console.log(globalVariable); // Output: Global
}
outer();
// In this example, the outer function does not declare a variable called globalVariable. However, it can access the globalVariable
// defined outside the function because of lexical scope. The outer function "looks up" the variable in the surrounding scope, finding it in the global scope.
// HOISTING //
// 1.Variable Hoisting:
// Variable declarations, using either var, let, or const, are hoisted to the top of their scope but are not initialized.
// If you try to access the variable before its declaration, it will exist but hold the value undefined.
console.log(myVar); // Output: undefined
var myVar = 42;
console.log(myVar); // Output: 42
// The variable myVar is hoisted, but its assignment (= 42) is not,
// so it is undefined until the assignment statement is reached during execution.
// 2. Function Hoisting:
// Function declarations are fully hoisted, including both the function name and its definition.
// This means you can call a function even before its actual declaration in the code.
foo(); // Output: "Hello from foo!"
function foo() {
console.log("Hello from foo!");
}
// The function foo is hoisted to the top of the scope, so it can be called anywhere within the same scope.
// 3.Block Scopes and Hoisting:
// Variables declared with let and const in block scopes (e.g., inside if statements or loops) are hoisted as well but remain in the
// "temporal dead zone" until their actual declaration. Trying to access them before the declaration results in a ReferenceError.
if (true) {
console.log(myVar); // Output: ReferenceError: Cannot access 'myVar' before initialization
let myVar = 42;
}
// In this example, myVar is hoisted to the top of the block,
// but it is in the temporal dead zone until the let myVar = 42; statement is encountered.
// Hoisting is a language feature designed to provide flexibility in how code is written,
// but it's best practice to declare variables and functions before using them to avoid any confusion or unexpected behavior. Additionally,
// using let and const for variable declarations in block scopes can help prevent issues caused by hoisting in those cases.
// Var Hoisting
// In JavaScript, variables declared with var are hoisted to the top of their scope, but only the declaration is hoisted, not the initialization.
// This means that the variable is recognized throughout its scope, but its value will be undefined until it is assigned a value in the code.
console.log(x); // Output: undefined
var x = 10;
console.log(x); // Output: 10
// **********
var x; // Declaration is hoisted
console.log(x); // Output: undefined
x = 10; // Initialization remains in place
console.log(x); // Output: 10
// Let and Const Hoisting
// Variables declared with let and const also hoist, but they have a slightly different behavior compared to var.
// Hoisting with let and const works the same way, but they are not initialized with undefined. Instead
// they enter into the "temporal dead zone," where you cannot access them before they are declared in the code.
// Attempting to access them before the declaration will result in a ReferenceError.
console.log(y); // Throws ReferenceError: Cannot access 'y' before initialization
let y = 20;
console.log(y); // Output: 20
let a; // Declaration is hoisted, but not initialized
console.log(a); // Throws ReferenceError: Cannot access 'y' before initialization
a = 20; // Initialization remains in place
console.log(a); // Output: 20
// To summarize, both var, let, and const are hoisted, but var is initialized with undefined and accessible before its declaration,
// while let and const enter the temporal dead zone and cannot be accessed before they are declared.
// It is considered good practice to declare variables at the beginning of their scope to avoid confusion and potential issues with hoisting
// Closure
// Closure is a fundamental concept in JavaScript, and it occurs when a function "remembers" its lexical scope even when it is executed outside of that scope.
// In other words, a closure allows a function to access and use variables from its outer(enclosing) scope,
// even after that outer function has finished executing.
function outerFunction() {
const outerVariable = 'I am from the outer function!';
function innerFunction() {
console.log(outerVariable); // innerFunction can access outerVariable
}
return innerFunction;
}
const closureFunction = outerFunction();
closureFunction(); // "I am from the outer function!"
// In this example, innerFunction is declared inside outerFunction.When outerFunction is called and then returns innerFunction,
// the closureFunction variable is assigned to innerFunction.
// Even after outerFunction has finished executing,
// closureFunction can still access the outerVariable because it forms a closure over the scope of outerFunction.
//Closure with Arguments
function greeting(name) {
return function (message) {
console.log(`${message}, ${name}!`);
};
}
const greetJohn = greeting('John');
const greetAlice = greeting('Alice');
greetJohn('Hello'); // "Hello, John!"
greetAlice('Hi'); // "Hi, Alice!"
// In this example, the greeting function returns another function that captures the name argument from its outer scope.
// When greetJohn and greetAlice are called, they remember the value of name that was passed when the outer function was called,
// allowing them to greet different people with the appropriate name.
// Closures are useful for creating private variables and encapsulating functionality.
// They enable powerful and flexible patterns in JavaScript programming.
// However, it's essential to be mindful of potential memory leaks when using closures,
// as they can hold references to variables in their outer scope, preventing them from being garbage collected.
// OBJECTS (ORIENTED)//
//this
//class
//Prototypes
//"Inheritance" and "Behaviour Delegation"
//(OO vs OLOO)
//this keyword
function ask(question) {
console.log(this.teacher, question);
}
var workshop = {
teacher: "Kyle",
}
var workshop1 = {
teacher: "Suzy",
};
workshop.ask("How do i share a method");
workshop1.ask("How do i share a method");
ask.call(workshop, "Can i explicitly set context ?");
ask.call(workshop1, "Can i explicitly set context ?");
// class{}
//class keyword is used to define a blueprint for creating objects with similar properties and behaviors.
//It provides a way to create constructor functions and their associated methods in a more structured and organized manner.
class Workshop {
constructor(teacher) {
this.teacher = teacher;
}
ask(question) {
console.log(this.teacher, question);
}
}
var deepjs = new Workshop("Tim");
var reactjs = new Workshop("Jimali");
deepjs.ask("is this class ? ");
reactjs.ask("is that a okay to class ?");
class Person {
constructor(name, age) {
this.name = name;
this.age = age;
}
sayHello() {
console.log(`Hello, my name is ${this.name} and I am ${this.age} years old.`);
}
}
const john = new Person('John', 30);
john.sayHello(); // "Hello, my name is John and I am 30 years old."
// PROTOTYPES
// the prototype is an important concept related to object-oriented programming and is used to add properties and methods to objects. Every object in JavaScript has a prototype property that points to its prototype object.
// The prototype object serves as a blueprint or a template for other objects. When you access a property or method on an object, and that property or method does not exist directly on the object itself, JavaScript looks for it in the object's prototype. This chain of objects linked through the prototype property is called the prototype chain.
// Here's a simplified explanation of prototypes:
// Each object in JavaScript has a hidden prototype property that points to another object (the prototype object).
// When you access a property or method on an object, JavaScript first checks if the property/method exists directly on the object. If not, it looks for it in the object's prototype.
// If the property/method is still not found in the prototype, JavaScript continues searching up the prototype chain until it reaches the root object (Object.prototype), which is the last link in the chain.
// Create a person object using object literal
const person = {
name: 'John',
sayHello() {
console.log(`Hello, my name is ${this.name}.`);
}
};
// Create a student object with the person object as its prototype
const student = Object.create(person);
student.major = 'Computer Science';
student.sayHello(); // Output: "Hello, my name is John."
console.log(student.major); // Output: "Computer Science"
// we create a person object with a name property and a sayHello method. Then, we create a student object using Object.create(person).
// This links the person object as the prototype of the student object. As a result, the student object inherits the properties and methods from the person object, forming a prototype chain.
// The concept of prototypes is fundamental to how JavaScript implements inheritance and allows for a more efficient use of memory and code reusability.
// It is also the basis for how classes and constructor functions work in JavaScript under the hood.
// OLOO - OBJECT LINKED TO OTHER OBJECT
// OLOO stands for "Objects Linked to Other Objects," and it is a design pattern in JavaScript that emphasizes delegation and behavior delegation over classical inheritance (like classes and prototypes).
// OLOO is an alternative to the traditional class-based inheritance model found in many programming languages, including JavaScript (using prototypes).
// Instead of using classes and constructors to create objects with inheritance hierarchies, OLOO focuses on creating objects that directly delegate to other objects, forming a chain of delegation.
// The basic idea behind OLOO is to use simple factory functions or object literals to create objects that share common behaviors through delegation,
// rather than through a complex prototype chain.
// Factory function to create a person object
function createPerson(name) {
return {
name,
sayHello() {
console.log(`Hello, my name is ${this.name}.`);
}
};
}
// Create a student object linked to a person object using Object.create
const person = createPerson('John');
const student = Object.create(person);
student.major = 'Computer Science';
student.sayHello(); // "Hello, my name is John."
console.log(student.major); // "Computer Science"
// we use the createPerson factory function to create a person object with a sayHello method. Then, we create a student object using Object.create(person). The student object directly delegates to the person object,
// allowing it to inherit the sayHello method. This approach avoids the complexity of dealing with constructor functions and prototypes, making the code simpler and easier to understand.
// OLOO promotes the principle of "behavior delegation" rather than "class-based inheritance,"
// making it a more flexible and straightforward way to compose objects and share behaviors in JavaScript.
// It is especially popular in the context of modern JavaScript development, where the emphasis is on simplicity, modularity, and code reusability.