diff --git a/MANIFEST.in b/MANIFEST.in index 3576c69a..ae40a204 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,5 +1,5 @@ include LICENSE.txt include README.md include requirements.txt -include bdi-kit/resource/*.json -include bdi-kit/resource/*.csv \ No newline at end of file +include bdikit/resource/*.json +include bdikit/resource/*.csv \ No newline at end of file diff --git a/README.md b/README.md index 071ebd85..80a9c89b 100644 --- a/README.md +++ b/README.md @@ -19,8 +19,6 @@ To install the latest development version: pip install git+https://github.com/VIDA-NYU/bdi-kit@devel ``` -Download the pre-trained model for mapping recommendations from [here](https://drive.google.com/file/d/1YdCTd-kUMjDJaltQwXN4X9ezTCsfjyft/view) (we show how to use it in our examples). - ## Documentation See our examples [here](https://github.com/VIDA-NYU/bdi-kit/tree/devel/examples). diff --git a/bdikit/api.py b/bdikit/api.py index 61cc0509..fdd31590 100644 --- a/bdikit/api.py +++ b/bdikit/api.py @@ -43,7 +43,7 @@ def load_dataset(self, dataset_path): def reduce_scope(self): self.scope_manager = ScopeReducingManager(self.dataset, self.global_table) self.reduced_scope = self.scope_manager.reduce() - return plot_reduce_scope(self.reduced_scope, self.dataset) + plot_reduce_scope(self.reduced_scope, self.dataset) def map_columns(self, algorithm='SimFloodAlgorithm'): self.column_manager = ColumnMappingManager(self.dataset, self.global_table, algorithm) diff --git a/bdikit/visualization/mappings.py b/bdikit/visualization/mappings.py index e5a56163..a3dd5178 100644 --- a/bdikit/visualization/mappings.py +++ b/bdikit/visualization/mappings.py @@ -7,13 +7,12 @@ def plot_reduce_scope(reduced_scope, dataset): scope_explorer = ScopeReducerExplorer(dataset, reduced_scope) - return scope_explorer.explore() + display(scope_explorer.explore()) def plot_column_mappings(column_mappings): column_mappings_df = pd.DataFrame(column_mappings.items(), columns=['Original Column', 'Target Column']) display(column_mappings_df) - def plot_value_mappings(value_mappings, include_unmatches=True): sorted_results = sorted(value_mappings.items(), key=lambda x: x[1]['coverage'], reverse=True)