forked from unitaryai/detoxify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
224 lines (190 loc) · 7.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import json
import os
import pytorch_lightning as pl
import src.data_loaders as module_data
import torch
from pytorch_lightning.callbacks import ModelCheckpoint
from src.utils import get_model_and_tokenizer
from torch.nn import functional as F
from torch.utils.data import DataLoader
class ToxicClassifier(pl.LightningModule):
"""Toxic comment classification for the Jigsaw challenges.
Args:
config ([dict]): takes in args from a predefined config
file containing hyperparameters.
"""
def __init__(self, config):
super().__init__()
self.save_hyperparameters()
self.num_classes = config["arch"]["args"]["num_classes"]
self.model_args = config["arch"]["args"]
self.model, self.tokenizer = get_model_and_tokenizer(**self.model_args)
self.bias_loss = False
if "loss_weight" in config:
self.loss_weight = config["loss_weight"]
if "num_main_classes" in config:
self.num_main_classes = config["num_main_classes"]
self.bias_loss = True
else:
self.num_main_classes = self.num_classes
self.config = config
def forward(self, x):
inputs = self.tokenizer(x, return_tensors="pt", truncation=True, padding=True).to(self.model.device)
outputs = self.model(**inputs)[0]
return outputs
def training_step(self, batch, batch_idx):
x, meta = batch
output = self.forward(x)
loss = self.binary_cross_entropy(output, meta)
self.log("train_loss", loss)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
x, meta = batch
output = self.forward(x)
loss = self.binary_cross_entropy(output, meta)
acc = self.binary_accuracy(output, meta)
self.log("val_loss", loss)
self.log("val_acc", acc)
return {"loss": loss, "acc": acc}
def test_step(self, batch, batch_idx):
x, meta = batch
output = self.forward(x)
loss = self.binary_cross_entropy(output, meta)
acc = self.binary_accuracy(output, meta)
self.log("test_loss", loss)
self.log("test_acc", acc)
return {"loss": loss, "acc": acc}
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), **self.config["optimizer"]["args"])
def binary_cross_entropy(self, input, meta):
"""Custom binary_cross_entropy function.
Args:
output ([torch.tensor]): model predictions
meta ([dict]): meta dict of tensors including targets and weights
Returns:
[torch.tensor]: model loss
"""
if "weight" in meta:
target = meta["target"].to(input.device).reshape(input.shape)
weight = meta["weight"].to(input.device).reshape(input.shape)
return F.binary_cross_entropy_with_logits(input, target, weight=weight)
elif "multi_target" in meta:
target = meta["multi_target"].to(input.device)
loss_fn = F.binary_cross_entropy_with_logits
mask = target != -1
loss = loss_fn(input, target.float(), reduction="none")
if "class_weights" in meta:
weights = meta["class_weights"][0].to(input.device)
elif "weights1" in meta:
weights = meta["weights1"].to(input.device)
else:
weights = torch.tensor(1 / self.num_main_classes).to(input.device)
loss = loss[:, : self.num_main_classes]
mask = mask[:, : self.num_main_classes]
weighted_loss = loss * weights
nz = torch.sum(mask, 0) != 0
masked_tensor = weighted_loss * mask
masked_loss = torch.sum(masked_tensor[:, nz], 0) / torch.sum(mask[:, nz], 0)
loss = torch.sum(masked_loss)
return loss
else:
target = meta["target"].to(input.device)
return F.binary_cross_entropy_with_logits(input, target.float())
def binary_accuracy(self, output, meta):
"""Custom binary_accuracy function.
Args:
output ([torch.tensor]): model predictions
meta ([dict]): meta dict of tensors including targets and weights
Returns:
[torch.tensor]: model accuracy
"""
if "multi_target" in meta:
target = meta["multi_target"].to(output.device)
else:
target = meta["target"].to(output.device)
with torch.no_grad():
mask = target != -1
pred = torch.sigmoid(output[mask]) >= 0.5
correct = torch.sum(pred.to(output[mask].device) == target[mask])
if torch.sum(mask).item() != 0:
correct = correct.item() / torch.sum(mask).item()
else:
correct = 0
return torch.tensor(correct)
def cli_main():
pl.seed_everything(1234)
# args
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config",
default=None,
type=str,
help="config file path (default: None)",
)
parser.add_argument(
"-r",
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: None)",
)
parser.add_argument(
"-d",
"--device",
default=None,
type=str,
help="indices of GPUs to enable (default: None)",
)
parser.add_argument(
"--num_workers",
default=10,
type=int,
help="number of workers used in the data loader (default: 10)",
)
parser.add_argument("-e", "--n_epochs", default=100, type=int, help="if given, override the num")
args = parser.parse_args()
config = json.load(open(args.config))
if args.device is not None:
config["device"] = args.device
# data
def get_instance(module, name, config, *args, **kwargs):
return getattr(module, config[name]["type"])(*args, **config[name]["args"], **kwargs)
dataset = get_instance(module_data, "dataset", config)
val_dataset = get_instance(module_data, "dataset", config, train=False)
data_loader = DataLoader(
dataset,
batch_size=int(config["batch_size"]),
num_workers=args.num_workers,
shuffle=True,
drop_last=True,
pin_memory=True,
)
valid_data_loader = DataLoader(
val_dataset,
batch_size=config["batch_size"],
num_workers=args.num_workers,
shuffle=False,
)
# model
model = ToxicClassifier(config)
# training
checkpoint_callback = ModelCheckpoint(
save_top_k=100,
verbose=True,
monitor="val_loss",
mode="min",
)
trainer = pl.Trainer(
gpus=args.device,
max_epochs=args.n_epochs,
accumulate_grad_batches=config["accumulate_grad_batches"],
callbacks=[checkpoint_callback],
resume_from_checkpoint=args.resume,
default_root_dir="saved/" + config["name"],
deterministic=True,
)
trainer.fit(model, data_loader, valid_data_loader)
if __name__ == "__main__":
cli_main()