forked from NVlabs/EmerNeRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuilders.py
149 lines (137 loc) · 4.85 KB
/
builders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import itertools
import logging
from typing import List, Tuple
import torch
from omegaconf import OmegaConf
from datasets.base import SceneDataset
from radiance_fields import (
DensityField,
RadianceField,
build_density_field,
build_radiance_field_from_cfg,
)
from third_party.nerfacc_prop_net import PropNetEstimator
logger = logging.getLogger()
def build_model_from_cfg(
cfg: OmegaConf,
dataset: SceneDataset,
device: torch.device = torch.device("cpu"),
) -> RadianceField:
cfg.num_train_timesteps = dataset.num_train_timesteps
if dataset.test_pixel_set is not None:
if cfg.head.enable_img_embedding:
cfg.head.enable_cam_embedding = True
cfg.head.enable_img_embedding = False
logger.info(
"Overriding enable_img_embedding to False because we have a test set."
)
model = build_radiance_field_from_cfg(cfg)
model.register_normalized_training_timesteps(
dataset.unique_normalized_training_timestamps,
time_diff=1 / dataset.num_img_timesteps,
)
if dataset.aabb is not None and cfg.resume_from is None:
model.set_aabb(dataset.aabb)
if dataset.pixel_source.features is not None and cfg.head.enable_feature_head:
# we cache the PCA reduction matrix and min/max values for visualization
model.register_feats_reduction_mat(
dataset.pixel_source.feat_dimension_reduction_mat,
dataset.pixel_source.feat_color_min,
dataset.pixel_source.feat_color_max,
)
return model.to(device)
def build_optimizer_from_cfg(
cfg: OmegaConf, model: RadianceField
) -> torch.optim.Optimizer:
# a very simple optimizer for now
optimizer = torch.optim.Adam(
model.parameters(),
lr=cfg.lr,
eps=1e-15,
weight_decay=cfg.weight_decay,
betas=(0.9, 0.99),
)
return optimizer
def build_scheduler_from_cfg(
cfg: OmegaConf, optimizer: torch.optim.Optimizer
) -> torch.optim.Optimizer:
# ------ build scheduler -------- #
scheduler_milestones = [
cfg.num_iters // 2,
cfg.num_iters * 3 // 4,
cfg.num_iters * 9 // 10,
]
if cfg.num_iters >= 10000:
scheduler_milestones.insert(0, cfg.num_iters // 4)
scheduler = torch.optim.lr_scheduler.ChainedScheduler(
[
# warmup
torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=0.01, total_iters=cfg.num_iters // 10
),
# Linear decay
torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=scheduler_milestones,
gamma=0.33,
),
]
)
return scheduler
def build_estimator_and_propnet_from_cfg(
nerf_cfg: OmegaConf,
optim_cfg: OmegaConf,
dataset: SceneDataset,
device: torch.device = torch.device("cpu"),
) -> Tuple[PropNetEstimator, List[DensityField]]:
proposal_networks = [
build_density_field(
n_input_dims=nerf_cfg.propnet.xyz_encoder.n_input_dims,
n_levels=nerf_cfg.propnet.xyz_encoder.n_levels_per_prop[i],
max_resolution=nerf_cfg.propnet.xyz_encoder.max_resolution_per_prop[i],
log2_hashmap_size=nerf_cfg.propnet.xyz_encoder.lgo2_hashmap_size_per_prop[
i
],
n_features_per_level=nerf_cfg.propnet.xyz_encoder.n_features_per_level,
unbounded=nerf_cfg.unbounded,
).to(device)
for i in range(len(nerf_cfg.propnet.num_samples_per_prop))
]
if dataset.aabb is not None and nerf_cfg.model.resume_from is None:
for p in proposal_networks:
p.set_aabb(dataset.aabb)
prop_optimizer = torch.optim.Adam(
itertools.chain(*[p.parameters() for p in proposal_networks]),
lr=optim_cfg.lr,
eps=1e-15,
weight_decay=optim_cfg.weight_decay,
betas=(0.9, 0.99),
)
scheduler_milestones = [
optim_cfg.num_iters // 2,
optim_cfg.num_iters * 3 // 4,
optim_cfg.num_iters * 9 // 10,
]
if optim_cfg.num_iters >= 10000:
scheduler_milestones.insert(0, optim_cfg.num_iters // 4)
prop_scheduler = torch.optim.lr_scheduler.ChainedScheduler(
[
torch.optim.lr_scheduler.LinearLR(
prop_optimizer,
start_factor=0.01,
total_iters=optim_cfg.num_iters // 10,
),
torch.optim.lr_scheduler.MultiStepLR(
prop_optimizer,
milestones=scheduler_milestones,
gamma=0.33,
),
]
)
estimator = PropNetEstimator(
prop_optimizer,
prop_scheduler,
enable_anti_aliasing_loss=nerf_cfg.propnet.enable_anti_aliasing_level_loss,
anti_aliasing_pulse_width=nerf_cfg.propnet.anti_aliasing_pulse_width,
).to(device)
return estimator, proposal_networks