-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_rise_mix_teacher.py
365 lines (331 loc) · 20.7 KB
/
train_rise_mix_teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import argparse
import torch
import clip
from torch import nn
from torch.nn import functional as F
from data import data_helper
from optimizer.optimizer_helper import get_optim_and_scheduler
from utils.Logger import Logger
from datetime import datetime
from timm.models import create_model
def get_args():
parser = argparse.ArgumentParser(description="Script to launch CLIP distillation")
parser.add_argument("--dataset", default="PACS")
parser.add_argument("--Domain_ID", default=['sketch', 'photo', 'cartoon', 'art_painting'])
parser.add_argument("--classes", default=["dog", "elephant", "giraffe", "guitar", "horse", "house", "person"])
parser.add_argument("--batch_size", "-b", type=int, default=128, help="Batch size")
parser.add_argument("--image_size", type=int, default=224, help="Image size")
parser.add_argument("--min_scale", default=0.8, type=float, help="Minimum scale percent")
parser.add_argument("--max_scale", default=1.0, type=float, help="Maximum scale percent")
parser.add_argument("--random_horiz_flip", default=0.5, type=float, help="Chance of random horizontal flip")
parser.add_argument("--jitter", default=0.4, type=float, help="Color jitter amount")
parser.add_argument("--tile_random_grayscale", default=0.1, type=float, help="Chance of randomly greyscale")
parser.add_argument("--learning_rate", "-l", type=float, default=.001, help="Learning rate")
parser.add_argument("--learning_rate_2", "-l2", type=float, default=.001, help="Learning rate")
parser.add_argument("--epochs", "-e", type=int, default=20, help="Number of epochs")
parser.add_argument("--n_classes", "-c", type=int, default=7, help="Number of classes")
parser.add_argument("--network", default="resnetv2_50x1_bit.goog_in21k_ft_in1k", help="Which network to use")
parser.add_argument("--val_size", type=float, default="0.1", help="Validation size (between 0 and 1)")
parser.add_argument("--folder_name", default='', help="Used by the logger to save logs")
parser.add_argument("--train_all", default=True, type=bool, help="If true, all network weights will be trained")
parser.add_argument("--GPU_num", default="0", help="specify which GPU(s) to be used")
parser.add_argument("--seed", type=int, default=0, help="seed")
parser.add_argument("--CLIP", default="ViT-B/16", help="CLIP model")
parser.add_argument("--output_folder", default='run1', help="folder where to save results file")
parser.add_argument("--output_file_name", default='.txt', help="results file name")
parser.add_argument("--data_path", default='', help="path of the dataset")
return parser.parse_args()
class Trainer:
def __init__(self, args, device, tt, ww1, ww2, ww3, target_name):
self.args = args
self.device = device
self.clip_model_ViT, _ = clip.load("ViT-B/16", device=self.device)
self.clip_model_RN, self.clip_transform = clip.load("RN101", device=self.device)
if self.args.dataset == "Terra":
print("please load your finetuned CLIP weight here")
# model_weights = torch.load("/path/finetuned_clip")
# self.clip_model.load_state_dict(model_weights)
self.text_feature_dim = 512
# ---CLIP prompt engineering
t1 = torch.cat([clip.tokenize(f"itap of a {c}.") for c in self.args.classes]).to(self.device)
t2 = torch.cat([clip.tokenize(f"a bad photo of the {c}.") for c in self.args.classes]).to(self.device)
t3 = torch.cat([clip.tokenize(f"a origami {c}.") for c in self.args.classes]).to(self.device)
t4 = torch.cat([clip.tokenize(f"a photo of the large {c}.") for c in self.args.classes]).to(self.device)
t5 = torch.cat([clip.tokenize(f"a {c} in a video game.") for c in self.args.classes]).to(self.device)
t6 = torch.cat([clip.tokenize(f"art of the {c}.") for c in self.args.classes]).to(self.device)
t7 = torch.cat([clip.tokenize(f"a photo of the small {c}.") for c in self.args.classes]).to(self.device)
text_list = []
if args.dataset == "Terra":
self.text_anchor = ['bright photo', 'corrupted photo', 'dark photo', 'good photo']
elif args.dataset == "VLCS":
self.text_anchor = ['bright photo', 'corrupted photo', 'dark photo', 'good photo']
else:
self.text_anchor = args.source
for source in self.text_anchor:
text_list.append(torch.cat([clip.tokenize(f"a {source} of a {c}") for c in self.args.classes]).to(device))
text_token_list = []
with torch.no_grad():
with torch.no_grad():
self.clip_model_ViT.eval()
text1_ViT = self.clip_model_ViT.encode_text(t1)
text2_ViT = self.clip_model_ViT.encode_text(t2)
text3_ViT = self.clip_model_ViT.encode_text(t3)
text4_ViT = self.clip_model_ViT.encode_text(t4)
text5_ViT = self.clip_model_ViT.encode_text(t5)
text6_ViT = self.clip_model_ViT.encode_text(t6)
text7_ViT = self.clip_model_ViT.encode_text(t7)
self.text_features_ems_ViT = (text1_ViT + text2_ViT + text3_ViT + text4_ViT + text5_ViT + text6_ViT + text7_ViT) / 7.0
self.CLIP_text_features_ems_before_norm = self.text_features_ems_ViT.clone().detach().type(torch.float32).to(self.device)
self.text_features_ems_ViT /= self.text_features_ems_ViT.norm(dim=-1, keepdim=True)
self.clip_model_ViT.eval()
text1_RN = self.clip_model_RN.encode_text(t1)
text2_RN = self.clip_model_RN.encode_text(t2)
text3_RN = self.clip_model_RN.encode_text(t3)
text4_RN = self.clip_model_RN.encode_text(t4)
text5_RN = self.clip_model_RN.encode_text(t5)
text6_RN = self.clip_model_RN.encode_text(t6)
text7_RN = self.clip_model_RN.encode_text(t7)
self.text_features_ems_RN = (text1_RN + text2_RN + text3_RN + text4_RN + text5_RN + text6_RN + text7_RN) / 7.0
self.text_features_ems_RN /= self.text_features_ems_RN.norm(dim=-1, keepdim=True)
for text in text_list:
text_token_list.append(self.clip_model_ViT.encode_text(text))
self.text_compare_teacher = torch.zeros(self.args.n_classes, len(self.text_anchor), self.text_feature_dim).to(self.device)
for i in range(self.args.n_classes):
for j in range(len(self.text_anchor)):
self.text_compare_teacher[i, j, :] = text_token_list[j][i]
model1 = create_model(self.args.network, pretrained=True, num_classes=self.args.n_classes)
model1.fc.weight.data = self.text_features_ems_ViT.data.float().clone().detach()
model1 = nn.DataParallel(model1)
self.model1 = model1.to(self.device)
model2 = create_model(self.args.network, pretrained=True, num_classes=self.args.n_classes)
model2.fc.weight.data = self.text_features_ems_RN.data.float().clone().detach()
model2 = nn.DataParallel(model2)
self.model2 = model2.to(self.device)
self.source_loader, self.val_loader = data_helper.get_train_ems_dataloader(args, self.clip_transform)
self.target_loader = data_helper.get_val_ems_dataloader(args, self.clip_transform)
self.test_loaders = {"val": self.val_loader, "test": self.target_loader}
self.len_dataloader = len(self.source_loader)
print("Dataset size: train %d, val %d, test %d" % (
len(self.source_loader.dataset), len(self.val_loader.dataset), len(self.target_loader.dataset)))
self.optimizer1, self.scheduler1 = get_optim_and_scheduler(self.model1, args.epochs, args.learning_rate,
args.train_all,
nesterov=False)
self.optimizer2, self.scheduler2 = get_optim_and_scheduler(self.model2, args.epochs, args.learning_rate_2,
args.train_all,
nesterov=False)
self.current_epoch = 0
self.distill_weight = ww1
self.classification_weight = ww2
self.distance_weight = ww3
self.T = tt
self.target_name = target_name
print("Loss weight: distill %.4f, cls %.4f, RD %.4f. Temperature: %.4f" % (
self.distill_weight, self.classification_weight, self.distance_weight, self.T))
def _do_epoch(self):
softmax = nn.Softmax(dim=1).cuda()
criterion = nn.CrossEntropyLoss()
cosine_sim_loss = torch.nn.CosineEmbeddingLoss()
self.model1.train()
self.model2.train()
for it, ((data, data_tc, class_l), d_idx) in enumerate(self.source_loader):
data1, data_tc1, class_l1, d_idx1 = data.to(self.device), data_tc.to(self.device), class_l.to(
self.device), d_idx.to(self.device)
data2, data_tc2, class_l2, d_idx2 = data.to(self.device), data_tc.to(self.device), class_l.to(
self.device), d_idx.to(self.device)
bs = data.shape[0]
# Calculate features
with torch.no_grad():
self.clip_model_ViT.eval()
CLIP_image_features_ViT = self.clip_model_ViT.encode_image(data1)
CLIP_image_features_RN = self.clip_model_RN.encode_image(data_tc2)
CLIP_image_features_ViT /= CLIP_image_features_ViT.norm(dim=-1, keepdim=True)
CLIP_image_features_RN /= CLIP_image_features_RN.norm(dim=-1, keepdim=True)
teacher_logits_ViT = (100.0 * CLIP_image_features_ViT @ self.text_features_ems_ViT.T).type(torch.float32)
teacher_logits_RN = (100.0 * CLIP_image_features_RN @ self.text_features_ems_RN.T).type(torch.float32)
self.optimizer1.zero_grad()
self.optimizer2.zero_grad()
student_embedding_ViT, class_logit_ViT = self.model1(data1)
student_embedding_RN, class_logit_RN = self.model2(data2)
# --- classification loss
supervised_loss1 = criterion(class_logit_ViT, class_l1)
supervised_loss2 = criterion(class_logit_RN, class_l2)
# --- distillation loss
kl_loss1 = F.kl_div(F.log_softmax(class_logit_ViT / self.T, dim=1),
F.softmax(teacher_logits_ViT / self.T, dim=1),
reduction='batchmean') * self.T * self.T
kl_loss2 = F.kl_div(F.log_softmax(class_logit_RN / self.T, dim=1),
F.softmax(teacher_logits_RN / self.T, dim=1),
reduction='batchmean') * self.T * self.T
# --- absolute distance loss
CLIP_text_embedding_instance_ViT = torch.zeros(student_embedding_ViT.shape[0], self.text_feature_dim).to(self.device)
CLIP_text_embedding_instance_RN = torch.zeros(student_embedding_RN.shape[0], self.text_feature_dim).to(self.device)
for i in range(bs):
CLIP_text_embedding_instance_ViT[i, :] = self.text_features_ems_ViT[class_l1[i], :]
CLIP_text_embedding_instance_RN[i, :] = self.text_features_ems_RN[class_l2[i], :]
cosine_sim_label1 = torch.ones(student_embedding_ViT.shape[0]).to(self.device)
cosine_sim_label2 = torch.ones(student_embedding_RN.shape[0]).to(self.device)
text_embed_loss_sim1 = cosine_sim_loss(F.normalize(student_embedding_ViT, dim=-1),
CLIP_text_embedding_instance_ViT, cosine_sim_label1)
text_embed_loss_sim2 = cosine_sim_loss(F.normalize(student_embedding_RN, dim=-1),
CLIP_text_embedding_instance_RN, cosine_sim_label2)
# --- relative distance loss
dist_teacher = torch.zeros(bs, len(self.text_anchor)).to(self.device)
dist_student = torch.zeros(bs, len(self.text_anchor)).to(self.device)
for pair1 in range(bs):
tmp_anchor_feat_student = student_embedding_ViT[pair1, :]
gt = class_l[pair1]
tmp_anchor_feat_teacher = self.CLIP_text_features_ems_before_norm[gt]
compare_feat = self.text_compare_teacher[gt]
dist_teacher[pair1, :] = F.cosine_similarity(tmp_anchor_feat_teacher.repeat(len(self.text_anchor), 1), compare_feat)
dist_student[pair1, :] = F.cosine_similarity(tmp_anchor_feat_student.repeat(len(self.text_anchor), 1), compare_feat)
dist_teacher = softmax(dist_teacher)
dist_student = softmax(dist_student)
domain_feature_relation_loss = F.mse_loss(dist_student, dist_teacher) * 10.0
class_probs_ViT = class_logit_ViT.softmax(dim=-1)
_, cls_pred_ViT = class_probs_ViT.max(dim=1)
class_probs_RN = class_logit_RN.softmax(dim=-1)
_, cls_pred_RN = class_probs_RN.max(dim=1)
loss1 = kl_loss1 * self.distill_weight \
+ supervised_loss1 * self.classification_weight \
+ text_embed_loss_sim1 * self.distance_weight + domain_feature_relation_loss * self.distance_weight * 0
loss2 = kl_loss2 * self.distill_weight \
+ supervised_loss2 * self.classification_weight \
+ text_embed_loss_sim2 * self.distance_weight
loss1.backward()
self.optimizer1.step()
loss2.backward()
self.optimizer2.step()
self.logger.log(it, len(self.source_loader),
{
"Loss_student1": loss1.item(), "Loss_student2": loss2.item()
},
{"class1": torch.sum(cls_pred_ViT == class_l1.data).item(),
"class2": torch.sum(cls_pred_RN == class_l2.data).item()
},
data.shape[0])
del loss1, class_logit_ViT, loss2, class_logit_RN
self.model1.eval()
self.model2.eval()
with torch.no_grad():
for phase, loader in self.test_loaders.items():
total = len(loader.dataset)
class_correct = self.do_test(loader)
class_acc = float(class_correct) / total
self.logger.log_test(phase, {"class": class_acc})
self.results[phase][self.current_epoch] = class_acc
def do_test(self, loader):
class_correct = 0
for it, ((data, data_tc, class_l), _) in enumerate(loader):
data1, data_tc1, class_l1 = data.to(self.device), data_tc.to(self.device), class_l.to(self.device)
data2, data_tc2, class_l2 = data.to(self.device), data_tc.to(self.device), class_l.to(self.device)
student_embedding_ViT, student_logits_ViT = self.model1(data1)
similarity_ViT = student_logits_ViT.softmax(dim=-1)
student_embedding_RN, student_logits_RN = self.model2(data2)
similarity_RN = student_logits_RN.softmax(dim=-1)
similarity_ems = similarity_ViT + similarity_RN
if self.args.dataset == "Terra":
student_embedding_ViT /= student_embedding_ViT.norm(dim=-1, keepdim=True)
student_logits_clip_1 = (100.0 * student_embedding_ViT @ self.text_features_ems_ViT.T.type(torch.float32)).type(torch.float32)
student_embedding_RN /= student_embedding_RN.norm(dim=-1, keepdim=True)
student_logits_clip_2 = (100.0 * student_embedding_RN @ self.text_features_ems_RN.T.type(torch.float32)).type(torch.float32)
similarity_ems += (student_logits_clip_1.softmax(dim=-1) + student_logits_clip_2.softmax(dim=-1))
_, cls_pred = similarity_ems.max(dim=1)
class_correct += torch.sum(cls_pred == class_l1.data)
return class_correct
def do_training(self):
self.logger = Logger(self.args, update_frequency=30)
self.results = {"val": torch.zeros(self.args.epochs), "test": torch.zeros(self.args.epochs)}
for self.current_epoch in range(self.args.epochs):
self.logger.new_epoch(self.scheduler1.get_last_lr())
self.logger.new_epoch(self.scheduler2.get_last_lr())
self._do_epoch()
self.scheduler1.step()
self.scheduler2.step()
val_res = self.results["val"]
test_res = self.results["test"]
idx_best = val_res.argmax()
print("Best val %g, corresponding test %g - best test: %g, best epoch: %g" % (
val_res.max(), test_res[idx_best], test_res.max(), idx_best))
self.logger.save_best(test_res[idx_best], test_res.max())
with open(self.args.output_file_name, 'a') as ff:
ff.write(
f'target domain {self.target_name}, t : {self.T}, w1: {self.distill_weight}, w2: {self.classification_weight}, w3: {self.distance_weight}')
ff.write('\n')
ff.write(f'Best val {val_res.max()}, corresponding test {test_res[idx_best]} - best test: {test_res.max()}, best epoch: {idx_best}')
ff.write('\n')
ff.write('\n')
return self.logger, self.model1
def train_with_sweep():
args = get_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
torch.backends.cudnn.benchmark = True
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#select_txt = os.path.join(os.getcwd(), 'data', 'hp_search', args.dataset + '.txt')
select_txt = os.path.join(os.getcwd(), 'data', 'hp_search', 'para5.txt')
print("parameter search space: ")
with open(select_txt, 'r') as ff:
lines = ff.readlines()
print(lines)
if args.dataset == "PACS":
args.Domain_ID = ['sketch', 'photo', 'cartoon', 'art_painting']
args.classes = ["dog", "elephant", "giraffe", "guitar", "horse", "house", "person"]
args.n_classes = 7
args.n_domain = 4
args.learning_rate_2 = 0.002
elif args.dataset == "VLCS":
args.Domain_ID = ["LABELME", "SUN", "VOC", "CALTECH"]
args.classes = ["bird", "car", "chair", "dog", "person"]
args.n_classes = 5
args.n_domain = 4
args.learning_rate_2 = 0.002
elif args.dataset == "Terra":
args.Domain_ID = ["location_100", "location_38", "location_43", "location_46"]
args.classes = ["bird", "bobcat", "cat", "coyote", "dog", "empty", "opossum", "rabbit", "raccoon", "squirrel"]
args.n_classes = 10
args.n_domain = 4
args.learning_rate = 0.002
args.learning_rate_2 = 0.004
elif args.dataset == "Officehome":
args.Domain_ID = ['Clipart', 'Art', 'RealWorld', 'Product']
args.classes = ["Alarm_Clock", "Backpack", "Batteries", "Bed", "Bike", "Bottle", "Bucket", "Calculator",
"Calendar", "Candles", "Chair", "Clipboards", "Computer", "Couch", "Curtains", "Desk_Lamp",
"Drill", "Eraser", "Exit_Sign", "Fan", "File_Cabinet", "Flipflops", "Flowers", "Folder", "Fork",
"Glasses", "Hammer", "Helmet", "Kettle", "Keyboard", "Knives", "Lamp_Shade", "Laptop", "Marker",
"Monitor", "Mop", "Mouse", "Mug", "Notebook", "Oven", "Pan", "Paper_Clip", "Pen", "Pencil",
"Postit_Notes", "Printer", "Push_Pin", "Radio", "Refrigerator", "Ruler", "Scissors",
"Screwdriver", "Shelf", "Sink", "Sneakers", "Soda", "Speaker", "Spoon", "Table", "Telephone",
"Toothbrush", "Toys", "Trash_Can", "TV", "Webcam"]
args.n_classes = 65
args.n_domain = 4
else:
raise NotImplementedError
for domain in args.Domain_ID:
args.target = domain
args.source = args.Domain_ID.copy()
args.source.remove(args.target)
print("Training {} on source domains:".format(args.dataset))
print(*args.source, sep=",")
print("Test on target domains:")
print(args.target)
now = datetime.now().strftime("%m-%d-%y_%H:%M:%S")
output_file_name = now + '_' + args.dataset + '_' + args.target + '.txt'
output_folder = os.path.join(os.getcwd(), 'results', args.output_folder)
if os.path.exists(output_folder):
pass
else:
os.makedirs(output_folder)
args.output_file_name = os.path.join(output_folder, output_file_name)
print("output results are saved at: {}".format(args.output_file_name))
for line in lines:
eles = line.strip().split(' ')
tt = float(eles[0])
w1 = float(eles[1])
w2 = float(eles[2])
w3 = float(eles[3])
trainer = Trainer(args, device, tt, w1, w2, w3, args.target)
trainer.do_training()
if __name__ == "__main__":
train_with_sweep()