-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_ddpm.py
202 lines (167 loc) · 8.32 KB
/
main_ddpm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import traceback
import shutil
import logging
import yaml
import sys
import os
import torch
import numpy as np
import torch.utils.tensorboard as tb
from runners.ddpm import Diffusion
from datasets import data_list,datasets_factory
from runners import OT_solver
torch.set_printoptions(sci_mode=False)
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()["__doc__"])
parser.add_argument( "--config", type=str, default="celeba.yml", help="Path to the config file")
parser.add_argument("--seed", type=int, default=12345, help="Random seed")
parser.add_argument("--exp", type=str, default="exp/score", help="Path for saving running related data.")
parser.add_argument("--doc",type=str,default="log",help="A string for documentation purpose,"
"Will be the name of the log folder.")
parser.add_argument("--comment", type=str, default="", help="A string for experiment comment" )
parser.add_argument("--verbose",type=str,default="info",help="Verbose level: info | debug | warning | critical",)
parser.add_argument("--sample", type= bool,default=False,help="Whether to produce samples from the model")
parser.add_argument( "--resume_training", default=False,action="store_true", help="Whether to resume training")
parser.add_argument("-i","--image_folder",type=str,default="images3",help="The folder name of samples",)
parser.add_argument("--use_pretrained_model", default=True)
parser.add_argument("--gpu_id",type=str, default="0,1")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
args.log_path = os.path.join(args.exp, "logs", args.doc)
# parse config file
with open(os.path.join("configs", args.config), "r") as f:
config = yaml.safe_load(f)
new_config = dict2namespace(config)
tb_path = os.path.join(args.exp, "tensorboard", args.doc)
if not args.sample:
if not args.resume_training:
if os.path.exists(args.log_path):
overwrite = False
response = input("Folder already exists. Overwrite? (Y/N)")
if response.upper() == "Y":
overwrite = True
if overwrite:
shutil.rmtree(args.log_path)
shutil.rmtree(tb_path)
os.makedirs(args.log_path)
if os.path.exists(tb_path):
shutil.rmtree(tb_path)
else:
print("Folder exists. Program go on.")
else:
os.makedirs(args.log_path)
with open(os.path.join(args.log_path, "config.yml"), "w") as f:
yaml.dump(new_config, f, default_flow_style=False)
new_config.tb_logger = tb.SummaryWriter(log_dir=tb_path)
# setup logger
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError("level {} not supported".format(args.verbose))
handler1 = logging.StreamHandler()
handler2 = logging.FileHandler(os.path.join(args.log_path, "stdout.txt"))
formatter = logging.Formatter(
"%(levelname)s - %(filename)s - %(asctime)s - %(message)s"
)
handler1.setFormatter(formatter)
handler2.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.addHandler(handler2)
logger.setLevel(level)
else:
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError("level {} not supported".format(args.verbose))
handler1 = logging.StreamHandler()
formatter = logging.Formatter(
"%(levelname)s - %(filename)s - %(asctime)s - %(message)s"
)
handler1.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.setLevel(level)
if args.sample:
os.makedirs(os.path.join(args.exp, "image_samples"), exist_ok=True)
args.image_folder = os.path.join(
args.exp, "image_samples", args.image_folder
)
if not os.path.exists(args.image_folder):
os.makedirs(args.image_folder)
else:
overwrite = True
if overwrite:
shutil.rmtree(args.image_folder)
os.makedirs(args.image_folder)
else:
print("Output image folder exists. Program halted.")
sys.exit(0)
# add device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
logging.info("Using device: {}".format(device))
new_config.device = device
# set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = True
return args, new_config
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
def main():
args, config = parse_args_and_config()
logging.info("Writing log file to {}".format(args.log_path))
logging.info("Exp instance id = {}".format(os.getpid()))
logging.info("Exp comment = {}".format(args.comment))
'''
Preparing the datasets.
'''
if config.dataset == "celeba":
'''Using unsupervised OT in image space.'''
source_dataset,target_datset,source_dataset_test = data_list.get_celeba_dataset(config.data.data_dir)
unpaired_dataset = datasets_factory.UnPairedDataset(source_dataset,target_datset,"exp/OT/models/non_zero_dict.pkl")
sampling_dataset = source_dataset_test
elif config.dataset == "animal":
'''Using semi-supervised OT in feature space.'''
source_dataset, target_dataset = data_list.get_animal_dataset(config.data.data_dir)
source_dataset_paired, target_dataset_paired = data_list.get_animal_dataset_keypoints(config.data.data_dir)
ot_solver = OT_solver.LargeScaleOTSolver(ot_type="semi-supervised")
'''Obtaining source feature datasets.'''
source_feature_dataset = ot_solver.extracting_features_for_dataset(source_dataset, None,
f"exp/OT/models/animal_source_features.pkl")
source_feature_dataset_paired = ot_solver.extracting_features_for_dataset(source_dataset_paired,
None,
f"exp/OT/models/animal_source_paired_features.pkl")
'''The unpaired training dataset contains source features vs target images.'''
unpaired_dataset = datasets_factory.UnPairedDataset(datasets_factory.ConcatDatasets(source_feature_dataset,
source_feature_dataset_paired),
datasets_factory.ConcatDatasets(target_dataset,
target_dataset_paired),
"exp/OT/models/non_zero_dict.pkl"
)
'''The sampling dataset contains source images vs source features.'''
sampling_dataset = datasets_factory.PairedDataset(source_dataset,source_feature_dataset)
else:
'''For you own task/datasets, please prepare datasets by refering to the celeba and animal. Also, you can
modify the config file (like celeba.yml) to define your model and configs.'''
NotImplementedError
trained_model_path = os.path.join(args.log_path, "ckpt.pth")
try:
runner = Diffusion(args, config)
if args.sample:
runner.sample(sampling_dataset,trained_model_path,bs=2)
else:
runner.train(unpaired_dataset)
except Exception:
logging.error(traceback.format_exc())
return 0
if __name__ == "__main__":
sys.exit(main())