-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathevaluation.py
210 lines (183 loc) · 6.96 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 18 15:19:02 2020
@author: Lim
"""
import os
import cv2
import math
import time
import torch
import evaluation
import numpy as np
from resnet_dcn import ResNet
#from dlanet_dcn import DlaNet
import matplotlib.pyplot as plt
from predict import pre_process, ctdet_decode, post_process, merge_outputs
# =============================================================================
# 推断
# =============================================================================
def process(images, return_time=False):
with torch.no_grad():
output = model(images)
hm = output['hm'].sigmoid_()
ang = output['ang'].relu_()
wh = output['wh']
reg = output['reg']
torch.cuda.synchronize()
forward_time = time.time()
dets = ctdet_decode(hm, wh, ang, reg=reg, K=100) # K 是最多保留几个目标
if return_time:
return output, dets, forward_time
else:
return output, dets
# =============================================================================
# 常规 IOU
# =============================================================================
def iou(bbox1, bbox2, center=False):
"""Compute the iou of two boxes.
Parameters
----------
bbox1, bbox2: list.
The bounding box coordinates: [xmin, ymin, xmax, ymax] or [xcenter, ycenter, w, h].
center: str, default is 'False'.
The format of coordinate.
center=False: [xmin, ymin, xmax, ymax]
center=True: [xcenter, ycenter, w, h]
Returns
-------
iou: float.
The iou of bbox1 and bbox2.
"""
if center == False:
xmin1, ymin1, xmax1, ymax1 = bbox1
xmin2, ymin2, xmax2, ymax2 = bbox2
else:
xmin1, ymin1 = bbox1[0] - bbox1[2] / 2.0, bbox1[1] - bbox1[3] / 2.0
xmax1, ymax1 = bbox1[0] + bbox1[2] / 2.0, bbox1[1] + bbox1[3] / 2.0
xmin2, ymin2 = bbox2[0] - bbox2[2] / 2.0, bbox2[1] - bbox2[3] / 2.0
xmax2, ymax2 = bbox2[0] + bbox2[2] / 2.0, bbox2[1] + bbox2[3] / 2.0
# 获取矩形框交集对应的顶点坐标(intersection)
xx1 = np.max([xmin1, xmin2])
yy1 = np.max([ymin1, ymin2])
xx2 = np.min([xmax1, xmax2])
yy2 = np.min([ymax1, ymax2])
# 计算两个矩形框面积
area1 = (xmax1 - xmin1 ) * (ymax1 - ymin1 )
area2 = (xmax2 - xmin2 ) * (ymax2 - ymin2 )
# 计算交集面积
inter_area = (np.max([0, xx2 - xx1])) * (np.max([0, yy2 - yy1]))
# 计算交并比
iou = inter_area / (area1 + area2 - inter_area + 1e-6)
return iou
#bbox1 = [1,1,2,2]
#bbox2 = [2,2,2,2]
#ret = iou(bbox1,bbox2,True)
# =============================================================================
# 旋转 IOU
# =============================================================================
def iou_rotate_calculate(boxes1, boxes2):
# print("####boxes2:", boxes1.shape)
# print("####boxes2:", boxes2.shape)
area1 = boxes1[2] * boxes1[3]
area2 = boxes2[2] * boxes2[3]
r1 = ((boxes1[0], boxes1[1]), (boxes1[2], boxes1[3]), boxes1[4])
r2 = ((boxes2[0], boxes2[1]), (boxes2[2], boxes2[3]), boxes2[4])
int_pts = cv2.rotatedRectangleIntersection(r1, r2)[1]
if int_pts is not None:
order_pts = cv2.convexHull(int_pts, returnPoints=True)
int_area = cv2.contourArea(order_pts)
# 计算出iou
ious = int_area * 1.0 / (area1 + area2 - int_area)
# print(int_area)
else:
ious=0
return ious
# 用中心点坐标、长宽、旋转角
#boxes1 = np.array([1,1,2,2,0],dtype='float32')
#boxes2 = np.array([2,2,2,2,0],dtype='float32')
#ret = iou_rotate_calculate(boxes1,boxes2)
# =============================================================================
# 获得标签信息
# =============================================================================
def get_lab_ret(xml_path):
ret = []
with open(xml_path, 'r', encoding='UTF-8') as fp:
ob = []
flag = 0
for p in fp:
key = p.split('>')[0].split('<')[1]
if key == 'cx':
ob.append(p.split('>')[1].split('<')[0])
if key == 'cy':
ob.append(p.split('>')[1].split('<')[0])
if key == 'w':
ob.append(p.split('>')[1].split('<')[0])
if key == 'h':
ob.append(p.split('>')[1].split('<')[0])
if key == 'angle':
ob.append(p.split('>')[1].split('<')[0])
flag = 1
if flag == 1:
x1 = float(ob[0])
y1 = float(ob[1])
w = float(ob[2])
h = float(ob[3])
angle = float(ob[4])*180/math.pi
angle = angle if angle < 180 else angle-180
bbox = [x1, y1, w, h, angle] # COCO 对应格式[x,y,w,h]
ret.append(bbox)
ob = []
flag = 0
return ret
def get_pre_ret(img_path, device):
image = cv2.imread(img_path)
images, meta = pre_process(image)
images = images.to(device)
output, dets, forward_time = process(images, return_time=True)
dets = post_process(dets, meta)
ret = merge_outputs(dets)
res = np.empty([1,7])
for i, c in ret.items():
tmp_s = ret[i][ret[i][:,5]>0.3]
tmp_c = np.ones(len(tmp_s)) * (i+1)
tmp = np.c_[tmp_c,tmp_s]
res = np.append(res,tmp,axis=0)
res = np.delete(res, 0, 0)
res = res.tolist()
return res
def pre_recall(root_path, device, iou=0.5):
imgs = os.listdir(root_path)
num = 0
all_pre_num = 0
all_lab_num = 0
miou = 0
mang = 0
for img in imgs:
if img.split('.')[-1] == 'jpg':
img_path = os.path.join(root_path, img)
xml_path = os.path.join(root_path, img.split('.')[0] + '.xml')
pre_ret = get_pre_ret(img_path, device)
lab_ret = get_lab_ret(xml_path)
all_pre_num += len(pre_ret)
all_lab_num += len(lab_ret)
for class_name,lx,ly,rx,ry,ang, prob in pre_ret:
pre_one = np.array([(rx+lx)/2, (ry+ly)/2, rx-lx, ry-ly, ang])
for cx, cy, w, h, ang_l in lab_ret:
lab_one = np.array([cx, cy, w, h, ang_l])
iou = iou_rotate_calculate(pre_one, lab_one)
ang_err = abs(ang - ang_l)/180
if iou > 0.5:
num += 1
miou += iou
mang += ang_err
return num/all_pre_num, num/all_lab_num, mang/num, miou/num
if __name__ == '__main__':
model = ResNet(34)
# model = DlaNet(34)
device = torch.device('cuda')
model.load_state_dict(torch.load('model\\res_dcn_34_best.pth'))
model.eval()
model.cuda()
p, r, mang, miou = pre_recall('imgs', device)
F1 = (2*p*r)/(p+r)