-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathpredict.py
245 lines (199 loc) · 8.35 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# -*- coding: utf-8 -*-
"""
Created on Mon Jan 6 22:20:07 2020
@author: Lim
"""
import os
import cv2
import math
import time
import torch
import numpy as np
import torch.nn as nn
from resnet_dcn import ResNet
from dlanet_dcn import DlaNet
from Loss import _gather_feat
from PIL import Image, ImageDraw
from dataset import get_affine_transform
from Loss import _transpose_and_gather_feat
def draw(filename,result):
img = Image.open(filename)
w, h=img.size
draw = ImageDraw.Draw(img)
for class_name,lx,ly,rx,ry,ang, prob in res:
result = [int((rx+lx)/2),int((ry+ly)/2),int(rx-lx),int(ry-ly),ang]
result=np.array(result)
x=int(result[0])
y=int(result[1])
height=int(result[2])
width=int(result[3])
anglePi = result[4]/180 * math.pi
anglePi = anglePi if anglePi <= math.pi else anglePi - math.pi
cosA = math.cos(anglePi)
sinA = math.sin(anglePi)
x1=x-0.5*width
y1=y-0.5*height
x0=x+0.5*width
y0=y1
x2=x1
y2=y+0.5*height
x3=x0
y3=y2
x0n= (x0 -x)*cosA -(y0 - y)*sinA + x
y0n = (x0-x)*sinA + (y0 - y)*cosA + y
x1n= (x1 -x)*cosA -(y1 - y)*sinA + x
y1n = (x1-x)*sinA + (y1 - y)*cosA + y
x2n= (x2 -x)*cosA -(y2 - y)*sinA + x
y2n = (x2-x)*sinA + (y2 - y)*cosA + y
x3n= (x3 -x)*cosA -(y3 - y)*sinA + x
y3n = (x3-x)*sinA + (y3 - y)*cosA + y
draw.line([(x0n, y0n),(x1n, y1n)], fill=(0, 0, 255),width=5) # blue 横线
draw.line([(x1n, y1n),(x2n, y2n)], fill=(255, 0, 0),width=5) # red 竖线
draw.line([(x2n, y2n),(x3n, y3n)],fill= (0,0,255),width=5)
draw.line([(x0n, y0n), (x3n, y3n)],fill=(255,0,0),width=5)
# plt.imshow(img)
# plt.show()
img.save(os.path.join('img_ret','dla_dcn_34_best_v2',os.path.split(filename)[-1]))
def pre_process(image):
height, width = image.shape[0:2]
inp_height, inp_width = 512, 512
c = np.array([width / 2., height / 2.], dtype=np.float32)
s = max(height, width) * 1.0
trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height])
inp_image = cv2.warpAffine(image, trans_input, (inp_width, inp_height),flags=cv2.INTER_LINEAR)
mean = np.array([0.5194416012442385,0.5378052387430711,0.533462090585746], dtype=np.float32).reshape(1, 1, 3)
std = np.array([0.3001546018824507, 0.28620901391179554, 0.3014112676161966], dtype=np.float32).reshape(1, 1, 3)
inp_image = ((inp_image / 255. - mean) / std).astype(np.float32)
images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width) # 三维reshape到4维,(1,3,512,512)
images = torch.from_numpy(images)
meta = {'c': c, 's': s,
'out_height': inp_height // 4,
'out_width': inp_width // 4}
return images, meta
def _nms(heat, kernel=3):
pad = (kernel - 1) // 2
hmax = nn.functional.max_pool2d(
heat, (kernel, kernel), stride=1, padding=pad)
keep = (hmax == heat).float()
return heat * keep
def _topk(scores, K=40):
batch, cat, height, width = scores.size()
topk_scores, topk_inds = torch.topk(scores.view(batch, cat, -1), K)
topk_inds = topk_inds % (height * width)
topk_ys = (topk_inds / width).int().float()
topk_xs = (topk_inds % width).int().float()
topk_score, topk_ind = torch.topk(topk_scores.view(batch, -1), K)
topk_clses = (topk_ind / K).int()
topk_inds = _gather_feat(
topk_inds.view(batch, -1, 1), topk_ind).view(batch, K)
topk_ys = _gather_feat(topk_ys.view(batch, -1, 1), topk_ind).view(batch, K)
topk_xs = _gather_feat(topk_xs.view(batch, -1, 1), topk_ind).view(batch, K)
return topk_score, topk_inds, topk_clses, topk_ys, topk_xs
def ctdet_decode(heat, wh, ang, reg=None, K=100):
batch, cat, height, width = heat.size()
# heat = torch.sigmoid(heat)
# perform nms on heatmaps
heat = _nms(heat)
scores, inds, clses, ys, xs = _topk(heat, K=K)
reg = _transpose_and_gather_feat(reg, inds)
reg = reg.view(batch, K, 2)
xs = xs.view(batch, K, 1) + reg[:, :, 0:1]
ys = ys.view(batch, K, 1) + reg[:, :, 1:2]
wh = _transpose_and_gather_feat(wh, inds)
wh = wh.view(batch, K, 2)
ang = _transpose_and_gather_feat(ang, inds)
ang = ang.view(batch, K, 1)
clses = clses.view(batch, K, 1).float()
scores = scores.view(batch, K, 1)
bboxes = torch.cat([xs - wh[..., 0:1] / 2,
ys - wh[..., 1:2] / 2,
xs + wh[..., 0:1] / 2,
ys + wh[..., 1:2] / 2,
ang], dim=2)
detections = torch.cat([bboxes, scores, clses], dim=2)
return detections
def process(images, return_time=False):
with torch.no_grad():
output = model(images)
hm = output['hm'].sigmoid_()
ang = output['ang'].relu_()
wh = output['wh']
reg = output['reg']
torch.cuda.synchronize()
forward_time = time.time()
dets = ctdet_decode(hm, wh, ang, reg=reg, K=100) # K 是最多保留几个目标
if return_time:
return output, dets, forward_time
else:
return output, dets
def affine_transform(pt, t):
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32).T
new_pt = np.dot(t, new_pt)
return new_pt[:2]
def transform_preds(coords, center, scale, output_size):
target_coords = np.zeros(coords.shape)
trans = get_affine_transform(center, scale, 0, output_size, inv=1)
for p in range(coords.shape[0]):
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
return target_coords
def ctdet_post_process(dets, c, s, h, w, num_classes):
# dets: batch x max_dets x dim
# return 1-based class det dict
ret = []
for i in range(dets.shape[0]):
top_preds = {}
dets[i, :, :2] = transform_preds(dets[i, :, 0:2], c[i], s[i], (w, h))
dets[i, :, 2:4] = transform_preds(dets[i, :, 2:4], c[i], s[i], (w, h))
classes = dets[i, :, -1]
for j in range(num_classes):
inds = (classes == j)
top_preds[j + 1] = np.concatenate([
dets[i, inds, :4].astype(np.float32),
dets[i, inds, 4:6].astype(np.float32)], axis=1).tolist()
ret.append(top_preds)
return ret
def post_process(dets, meta):
dets = dets.detach().cpu().numpy()
dets = dets.reshape(1, -1, dets.shape[2])
num_classes = 1
dets = ctdet_post_process(dets.copy(), [meta['c']], [meta['s']],meta['out_height'], meta['out_width'], num_classes)
for j in range(1, num_classes + 1):
dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 6)
dets[0][j][:, :5] /= 1
return dets[0]
def merge_outputs(detections):
num_classes = 1
max_obj_per_img = 100
scores = np.hstack([detections[j][:, 5] for j in range(1, num_classes + 1)])
if len(scores) > max_obj_per_img:
kth = len(scores) - max_obj_per_img
thresh = np.partition(scores, kth)[kth]
for j in range(1, 2 + 1):
keep_inds = (detections[j][:, 5] >= thresh)
detections[j] = detections[j][keep_inds]
return detections
if __name__ == '__main__':
# model = ResNet(18)
model = DlaNet(34)
device = torch.device('cuda')
model.load_state_dict(torch.load('best.pth'))
model.eval()
model.cuda()
for image_name in [os.path.join('imgs',f) for f in os.listdir('imgs')]:
# image_name = 'data/images/011.jpg'
if image_name.split('.')[-1] == 'jpg':
image = cv2.imread(image_name)
images, meta = pre_process(image)
images = images.to(device)
output, dets, forward_time = process(images, return_time=True)
dets = post_process(dets, meta)
ret = merge_outputs(dets)
res = np.empty([1,7])
for i, c in ret.items():
tmp_s = ret[i][ret[i][:,5]>0.3]
tmp_c = np.ones(len(tmp_s)) * (i+1)
tmp = np.c_[tmp_c,tmp_s]
res = np.append(res,tmp,axis=0)
res = np.delete(res, 0, 0)
res = res.tolist()
draw(image_name, res) # 画旋转矩形