-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathtrain.py
44 lines (39 loc) · 1.99 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright (c) 2022, Zikang Zhou. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from datamodules import ArgoverseV1DataModule
from models.hivt import HiVT
if __name__ == '__main__':
pl.seed_everything(2022)
parser = ArgumentParser()
parser.add_argument('--root', type=str, required=True)
parser.add_argument('--train_batch_size', type=int, default=32)
parser.add_argument('--val_batch_size', type=int, default=32)
parser.add_argument('--shuffle', type=bool, default=True)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--pin_memory', type=bool, default=True)
parser.add_argument('--persistent_workers', type=bool, default=True)
parser.add_argument('--gpus', type=int, default=1)
parser.add_argument('--max_epochs', type=int, default=64)
parser.add_argument('--monitor', type=str, default='val_minFDE', choices=['val_minADE', 'val_minFDE', 'val_minMR'])
parser.add_argument('--save_top_k', type=int, default=5)
parser = HiVT.add_model_specific_args(parser)
args = parser.parse_args()
model_checkpoint = ModelCheckpoint(monitor=args.monitor, save_top_k=args.save_top_k, mode='min')
trainer = pl.Trainer.from_argparse_args(args, callbacks=[model_checkpoint])
model = HiVT(**vars(args))
datamodule = ArgoverseV1DataModule.from_argparse_args(args)
trainer.fit(model, datamodule)