-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtestPF_3objs.py
124 lines (96 loc) · 4.38 KB
/
testPF_3objs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import pickle
import random
import numpy as np
from numpy.random import randn
from numpy.linalg import norm
from sklearn.utils.linear_assignment_ import _hungarian
from filterpy.monte_carlo import systematic_resample
from utils.filter_utils import (create_uniform_particles, create_gaussian_particles,
predict, update, estimate, neff, resample_from_index)
import matplotlib.pyplot as plt
from utils import custom_plots
def angle_between(p1, p2):
ang1 = np.arctan2(*p1[::-1])
ang2 = np.arctan2(*p2[::-1])
return ang1 - ang2 # angle in radians
# LOAD THE SYNTHETIC AND TRUTH SEQUENCES
locs1 = pickle.load(open('./input/target_locs_1.pkl', 'rb'), encoding='latin1')
locs2 = pickle.load(open('./input/target_locs_2.pkl', 'rb'), encoding='latin1')
locs3 = pickle.load(open('./input/target_locs_3.pkl', 'rb'), encoding='latin1')
rows, cols = (250,250)
# PARTICLE FILTER SETTINGS
sensor_std_err=0.1
do_plot=True
plot_particles=True
initial_x=None
N = 5000
landmarks = np.array([[1,1], [1,cols-1], [rows-1,1], [rows-1,cols-1]])
NL = len(landmarks)
n_possible_targets = 6
particles_list = []
weights_list = []
pcolors = ['mediumblue', 'limegreen', 'gold']
# ITERATE THROUGH THE INPUT FRAMES, DETECTING & P.F. TRACKING
for ifn in range(139):
print('frame:', ifn)
frame = np.zeros([rows, cols])
# make some of the inputs "spurious" to test robustness of method
for isp in [20,21,22,23]:
locs1[isp] = np.array([80,90])
dets = np.array([locs1[ifn], locs2[ifn], locs3[ifn]])
# create particles and weights
for _ in range(len(dets)):
if initial_x is not None:
particles = create_gaussian_particles(mean=initial_x, std=(5, 5, np.pi/4), N=N)
else:
particles = create_uniform_particles((0,rows), (0,cols), (0, 6.28), N)
particles_list.append(particles)
weights = np.zeros(N)
weights_list.append(weights)
if ifn == 0:
dets_prev = dets
else:
# determine initial location and heading from dets and dets_prev
if dets.size > 0:
# create cost array from detections
cost = []
for a in dets:
dist = [np.linalg.norm(a - b) for b in dets_prev]
cost.append(dist)
# associate detections
result = _hungarian(np.array(cost))
for ii in range(len(result)):
cidx, pidx = result[ii]
robot_pos = dets[cidx][::-1] # expects (x,y) instead of (y,x)
robot_pos_prev = dets_prev[pidx][::-1]
#print('Position:', robot_pos, 'Position_prev:', robot_pos_prev)
heading = angle_between(robot_pos_prev, robot_pos)
speed = np.linalg.norm(robot_pos - robot_pos_prev)
particles = particles_list[pidx]
weights = weights_list[pidx]
# distance from robot to each landmark
zs = (norm(landmarks - robot_pos, axis=1) +
(randn(NL) * sensor_std_err))
# move
predict(particles, u=(speed, heading), std=(0.5, 0.4))
# incorporate measurements
update(particles, weights, z=zs, R=sensor_std_err,
landmarks=landmarks)
# resample if too few effective particles
if neff(weights) < N/2:
indexes = systematic_resample(weights)
resample_from_index(particles, weights, indexes)
mu, var = estimate(particles, weights)
if plot_particles:
plt.scatter(particles[:, 0], particles[:, 1],
color='r', marker=',', s=1, alpha=0.1)#0.05)
plt1 = plt.scatter(robot_pos[0], robot_pos[1], marker='+',
color='w', s=80, lw=1)
plt2 = plt.scatter(mu[0], mu[1], marker=',', s=6, color=pcolors[pidx])
frameNumb = str(ifn).zfill(4)
#accept = custom_plots.show_img_return_input(frame, str(ifn), cm='gray', ask=False)
#custom_plots.write_img(frame, frameNumb, './output')
dets_prev = dets
plt.legend([plt1, plt2], ['Actual', 'PF'], loc=1, numpoints=1)
print('final position error, variance:\n\t', mu, var)
plt.show()