forked from LiveCodeBench/LiveCodeBench
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcompute_scores.py
155 lines (131 loc) · 4.85 KB
/
compute_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import json
import argparse
import numpy as np
from datetime import datetime
from lcb_runner.lm_styles import LanguageModelStore
from lcb_runner.evaluation.pass_k_utils import (
estimate_pass_at_k,
compute_metrics_from_results,
)
from lcb_runner.utils.scenarios import Scenario
from lcb_runner.utils.path_utils import get_eval_all_output_path
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
default="gpt-3.5-turbo-0301",
help="Name of the model to use matching `lm_styles.py`",
)
parser.add_argument(
"--scenario",
type=Scenario,
default=Scenario.codegeneration,
help="Type of scenario to run",
)
parser.add_argument(
"--n", type=int, default=10, help="Number of samples to generate"
)
parser.add_argument(
"--temperature", type=float, default=0.2, help="Temperature for sampling"
)
parser.add_argument(
"--eval_all_file",
type=str,
default=None,
help="Alternative way to provide the evaluation file",
)
parser.add_argument(
"--start_date",
type=str,
default=None,
help="Start date for the contest to filter the evaluation file (format - YYYY-MM-DD)",
)
parser.add_argument(
"--end_date",
type=str,
default=None,
help="End date for the contest to filter the evaluation file (format - YYYY-MM-DD)",
)
parser.add_argument(
"--platform",
type=str,
default=None,
help="Platform to filter the evaluation file",
)
args = parser.parse_args()
if args.eval_all_file is None:
model = LanguageModelStore[args.model]
args.eval_all_file = get_eval_all_output_path(model, args)
return args
def compute_scores(args):
with open(args.eval_all_file, "r") as f:
results = json.load(f)
for res in results:
res["contest_date"] = datetime.fromisoformat(res["contest_date"])
if args.start_date is not None:
args.start_date = datetime.strptime(args.start_date, "%Y-%m-%d")
results = [
result for result in results if args.start_date <= result["contest_date"]
]
if args.end_date is not None:
args.end_date = datetime.strptime(args.end_date, "%Y-%m-%d")
results = [
result for result in results if result["contest_date"] <= args.end_date
]
if args.platform is not None:
results = [result for result in results if result["platform"] == args.platform]
print(len(results))
totals = [len(x["graded_list"]) for x in results]
corrects = [sum(x["graded_list"]) for x in results]
easy_totals = [len(x["graded_list"]) for x in results if x["difficulty"] == "easy"]
med_totals = [len(x["graded_list"]) for x in results if x["difficulty"] == "medium"]
hard_totals = [len(x["graded_list"]) for x in results if x["difficulty"] == "hard"]
easy_corrects = [sum(x["graded_list"]) for x in results if x["difficulty"] == "easy"]
med_corrects = [sum(x["graded_list"]) for x in results if x["difficulty"] == "medium"]
hard_corrects = [sum(x["graded_list"]) for x in results if x["difficulty"] == "hard"]
for k in [1, 5, 10, 25, 50, 100, 150, 200]:
print(
f"Pass@{k} = ",
estimate_pass_at_k(totals, corrects, k).mean(),
# np.array(
# [estimate_pass_at_k(t, c, k) for t, c in zip(totals, corrects)]
# ).mean(),
)
print(
f"Easy Pass@{k} = ",
estimate_pass_at_k(easy_totals, easy_corrects, k).mean(),
)
print(
f"Medium Pass@{k} = ",
estimate_pass_at_k(med_totals, med_corrects, k).mean(),
)
print(
f"Hard Pass@{k} = ",
estimate_pass_at_k(hard_totals, hard_corrects, k).mean(),
)
pass_1_list = [result["pass@1"] for result in results]
print(f"Pass@1: {sum(pass_1_list) / len(pass_1_list)}")
easy_pass_1_list = [
result["pass@1"]
for result in results
if "difficulty" in result and result["difficulty"] == "easy"
]
if len(easy_pass_1_list) > 0:
print(f"Easy Pass@1: {sum(easy_pass_1_list) / len(easy_pass_1_list)}")
medium_pass_1_list = [
result["pass@1"]
for result in results
if "difficulty" in result and result["difficulty"] == "medium"
]
if len(medium_pass_1_list) > 0:
print(f"Medium Pass@1: {sum(medium_pass_1_list) / len(medium_pass_1_list)}")
hard_pass_1_list = [
result["pass@1"]
for result in results
if "difficulty" in result and result["difficulty"] == "hard"
]
if len(hard_pass_1_list) > 0:
print(f"Hard Pass@1: {sum(hard_pass_1_list) / len(hard_pass_1_list)}")
if __name__ == "__main__":
compute_scores(get_parser())