-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path99_functions.R
122 lines (106 loc) · 4.18 KB
/
99_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# 99_functions.R
# November 2020
### Functions use by 0_read_data_redcap.R to format data ###
centre_name = function(x){
x = ifelse(x == 122, 'Metro South', 'Sunshine Coast')
}
# function for audit score, make into numbers for scoring
audit_score = function(x){
x = as.character(x)
y = case_when(
x %in% c('Never','None, 1 or 2','No') ~ 0,
x %in% c('Monthly or less','3 or 4','Less than monthly') ~ 1,
x %in% c('2 to 4 times a month','5 or 6','Monthly','Yes, but not in the past year') ~ 2,
x %in% c('2 to 3 times a week','7 to 9','Weekly') ~ 3,
x %in% c('4 or more times a week','Daily or almost daily','10 or more','Yes, during the past year') ~ 4
)
return(y)
}
# make factor from numbers with yes/no as default
yesno = function(x, labels=c('No','Yes')){
y = as.numeric(x)
y = ifelse(x == '', NA, y)
y = factor(y, levels=0:1, labels=labels)
return(y)
}
# make factor from numbers
yesnounclear = function(x){
y = as.numeric(x)
y = ifelse(x == '', NA, y)
y = factor(y, levels=0:2, labels=c('No','Yes','Unclear'))
return(y)
}
#
drinks_factor = function(x){
y = as.numeric(x)
y = ifelse(x == '', NA, y)
y = factor(y, levels=0:4, labels= c('Never','Less than monthly','Monthly','Weekly','Daily or almost daily'))
return(y)
}
## function to run survival models
run_survival = function(indata,
outcome_date, # first date
start_date, # date of randomisation
censor_date # date of notes review
){
# rename
index = which(names(indata) == outcome_date)
names(indata)[index] = 'outcome_date'
index = which(names(indata) == start_date)
names(indata)[index] = 'start_date'
index = which(names(indata) == censor_date)
names(indata)[index] = 'censor_date'
# make data set
indata = filter(indata, !is.na(randomised)) %>%
mutate(event = !is.na(outcome_date), # event if there's an outcome date
last_date = ifelse(event==TRUE, outcome_date, censor_date), # use censor date if no outcome
last_date = as.Date(last_date, origin = '1970-01-01'),
time = last_date - start_date + 0.5, # difference in days
time = as.numeric(time) / 365.25 # convert to years
)
# exclude any negative or missing times
negative = sum(indata$time <= 0, na.rm = TRUE) + sum(is.na(indata$time))
indata = filter(indata, time > 0)
# total follow-up time
total_fu = sum(indata$time)
## create Kaplan-Meier
indata = mutate(indata,
random = ifelse(str_detect('New ', randomised), 'New model','Usual care'),
random = factor(randomised)) # makes nicer labels
km = survfit(Surv(time, event==TRUE) ~ random, data = indata)
# run Weibull model in nimble
source('99_run_weibull.R', local = environment())
#
to_return = list()
to_return$events = events
to_return$censored = censored
to_return$survdata = indata
to_return$negative = negative
to_return$km = km
to_return$weibull = weibull
to_return$table = table
to_return$total_fu = total_fu
to_return$chain_plot = cplot
return(to_return)
}
# nice rename variable
nice_variable = function(invar){
out = case_when(
str_detect(invar, 'New model') ~ 'New model of care',
str_detect(invar, 'Male') ~ 'Male',
str_detect(invar, 'phone_time') ~ 'Time since randomisation (months)',
str_detect(invar, '\\bage\\b') ~ 'Age (+10 years)', # scaled
str_detect(invar, 'Sunshine') ~ 'Sunshine Coast',
invar == 'SD' ~ 'Standard deviation',
str_detect(invar, 'Intercept') ~ 'Intercept',
str_detect(invar, 'eq5d_b') ~ 'EQ-5D at baseline',
str_detect(invar, 'gp_baseline') ~ 'GP visits at baseline (log-transformed)',
str_detect(invar, 'dietician_baseline') ~ 'Saw nutritionist/dietician at baseline',
str_detect(invar, '\\bshape\\b') ~ 'Weibull shape',
str_detect(invar, 'median1') ~ 'Median time (usual care)',
str_detect(invar, 'median2') ~ 'Median time (new model of care)',
str_detect(invar, 'mediandiff') ~ 'Median difference (usual care minus new model)',
TRUE ~ as.character(invar)
)
return(out)
}