-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
220 lines (190 loc) · 8.58 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
""" `model.py` defines:
* DNN layers including the output layer,
* LatticeRNN model that connects LSTM layers and DNN layers.
* If requested, the grapheme encoder is added to the model.
"""
from grapheme_encoder import LuongAttention, GraphemeEncoder
from lstm import LSTM, LSTMCell
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import init
class DNN(nn.Module):
"""A module that defines multi-layer fully connected neural networks."""
def __init__(self, input_size, hidden_size, output_size, num_layers,
initialization, use_bias=True, logit=False):
"""Build multi-layer FC."""
super(DNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.num_layers = num_layers
self.initialization = initialization
self.use_bias = use_bias
self.logit = logit
if num_layers > 0:
for layer in range(num_layers):
layer_input_size = input_size if layer == 0 else hidden_size
fc = nn.Linear(layer_input_size, hidden_size, bias=use_bias)
setattr(self, 'fc_{}'.format(layer), fc)
self.out = nn.Linear(hidden_size, output_size, bias=use_bias)
else:
self.out = nn.Linear(input_size, output_size, bias=use_bias)
self.reset_parameters()
def get_fc(self, layer):
"""Get FC layer by layer number."""
return getattr(self, 'fc_{}'.format(layer))
def reset_parameters(self):
"""Initialise parameters for all layers."""
init_method = getattr(init, self.initialization)
for layer in range(self.num_layers):
fc = self.get_fc(layer)
init_method(fc.weight.data)
if self.use_bias:
init.constant(fc.bias.data, val=0)
init_method(self.out.weight.data)
init.constant(self.out.bias.data, val=0)
def forward(self, x):
"""Complete multi-layer DNN network."""
for layer in range(self.num_layers):
fc = self.get_fc(layer)
x = F.relu(fc(x))
output = self.out(x)
if self.logit:
return output
else:
return F.sigmoid(output)
class Attention(nn.Module):
"""A module that defines multi-layer fully connected neural networks."""
def __init__(self, input_size, hidden_size, num_layers,
initialization, use_bias=True):
"""Build multi-layer FC."""
super(Attention, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.initialization = initialization
self.use_bias = use_bias
if num_layers > 0:
for layer in range(num_layers):
layer_input_size = input_size if layer == 0 else hidden_size
fc = nn.Linear(layer_input_size, hidden_size, bias=use_bias)
setattr(self, 'attention_{}'.format(layer), fc)
self.out = nn.Linear(hidden_size, 1, bias=use_bias)
else:
self.out = nn.Linear(input_size, 1, bias=use_bias)
self.reset_parameters()
def get_fc(self, layer):
"""Get FC layer by layer number."""
return getattr(self, 'attention_{}'.format(layer))
def reset_parameters(self):
"""Initialise parameters for all layers."""
init_method = getattr(init, self.initialization)
for layer in range(self.num_layers):
fc = self.get_fc(layer)
init_method(fc.weight.data)
if self.use_bias:
init.constant(fc.bias.data, val=0)
init_method(self.out.weight.data)
init.constant(self.out.bias.data, val=0)
def forward(self, x, context):
"""Complete multi-layer DNN network."""
# Concat context with hidden representations
output = torch.cat((x, context), dim=1)
for layer in range(self.num_layers):
fc = self.get_fc(layer)
output = F.relu(fc(output))
output = self.out(output).view(1, -1)
output = F.tanh(output)
return F.softmax(output, dim=1)
class Model(nn.Module):
"""Bidirectional LSTM model on lattices."""
def __init__(self, opt):
"""Basic model building blocks."""
nn.Module.__init__(self)
self.opt = opt
if self.opt.arc_combine_method == 'attention':
self.attention = Attention(self.opt.hiddenSize + 3,
self.opt.attentionSize,
self.opt.attentionLayers, self.opt.init_word,
use_bias=True)
else:
self.attention = None
if self.opt.grapheme_combination != 'None':
self.is_graphemic = True
if self.opt.grapheme_encoding:
self.grapheme_encoder = GraphemeEncoder(self.opt)
self.grapheme_attention = LuongAttention(
attn_type=self.opt.grapheme_combination,
num_features=self.opt.grapheme_hidden_size * 2,
initialisation=self.opt.init_grapheme
)
self.has_grapheme_encoding = True
else:
self.grapheme_attention = LuongAttention(
attn_type=self.opt.grapheme_combination,
num_features=self.opt.grapheme_features,
initialisation=self.opt.init_grapheme
)
self.has_grapheme_encoding = False
else:
self.is_graphemic = False
num_directions = 2 if self.opt.bidirectional else 1
self.lstm = LSTM(LSTMCell, self.opt.inputSize, self.opt.hiddenSize,
self.opt.nLSTMLayers, use_bias=True,
bidirectional=self.opt.bidirectional,
attention=self.attention)
self.dnn = DNN(num_directions * self.opt.hiddenSize,
self.opt.linearSize, 1, self.opt.nFCLayers,
self.opt.init_word, use_bias=True, logit=True)
def forward(self, lattice):
"""Forward pass through the model."""
# Apply attention over the grapheme information
if self.is_graphemic:
if self.has_grapheme_encoding:
grapheme_encoding, _ = self.grapheme_encoder.forward(lattice.grapheme_data)
reduced_grapheme_info, _ = self.grapheme_attention.forward(
key=self.create_key(lattice, grapheme_encoding),
query=grapheme_encoding,
val=grapheme_encoding
)
else:
reduced_grapheme_info, _ = self.grapheme_attention.forward(
key=self.create_key(lattice, None),
query=lattice.grapheme_data,
val=lattice.grapheme_data
)
reduced_grapheme_info = reduced_grapheme_info.squeeze(1)
lattice.edges = torch.cat((lattice.edges, reduced_grapheme_info), dim=1)
# BiLSTM -> FC(relu) -> LayerOut (sigmoid if not logit)
output = self.lstm.forward(lattice, self.opt.arc_combine_method)
output = self.dnn.forward(output)
return output
def create_key(self, lattice, grapheme_encoding):
""" Concat features to create a key for grapheme attention"""
if self.grapheme_attention.attn_type == 'concat-enc-key':
padded_grapheme_dim = lattice.grapheme_data.shape[1]
word_durations = torch.unsqueeze(torch.unsqueeze(lattice.edges[:, DURATION_IDX], 1).repeat(1, padded_grapheme_dim), 2)
mask = torch.unsqueeze((torch.sum(lattice.grapheme_data, dim=2) != 0), 2)
masked_word_durations = word_durations * mask.type(torch.FloatTensor)
if self.has_grapheme_encoding:
if grapheme_encoding is None:
raise Exception('No grapheme encoding to use for a key')
key = torch.cat((grapheme_encoding, masked_word_durations), dim=2)
else:
key = torch.cat((lattice.grapheme_data, masked_word_durations), dim=2)
else:
# For all self-attention schemes
if self.has_grapheme_encoding:
if grapheme_encoding is None:
raise Exception('No grapheme encoding to use for a key')
key = grapheme_encoding
else:
key = lattice.grapheme_data
return key
def create_model(opt):
"""New Model object."""
model = Model(opt)
model.share_memory()
return model