-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtranslate_ensemble.py
344 lines (273 loc) · 13.3 KB
/
translate_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#
# Translate sentences from the input stream.
# The model will be faster is sentences are sorted by length.
# Input sentences must have the same tokenization and BPE codes than the ones used in the model.
# It also supports ensemble multiple models, beam search and length penlty.
#
# Usage:
# cat source_sentences.bpe | \
# python translate.py --exp_name translate \
# --exp_id en-fr \
# --src_lang en --tgt_lang fr \
# --model_path model1.pth,model2.pth --output_path output \
# --beam 10 --length_penalty 1.1
#
import os
import io
import sys
import argparse
import torch
import math
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from src.utils import AttrDict
from src.utils import bool_flag, initialize_exp
from src.data.dictionary import Dictionary
from src.model.transformer import TransformerModel
from src.model.transformer import BeamHypotheses
from src.fp16 import network_to_half
def get_parser():
"""
Generate a parameters parser.
"""
# parse parameters
parser = argparse.ArgumentParser(description="Translate sentences")
# main parameters
parser.add_argument("--dump_path", type=str, default="./dumped/", help="Experiment dump path")
parser.add_argument("--exp_name", type=str, default="", help="Experiment name")
parser.add_argument("--exp_id", type=str, default="", help="Experiment ID")
parser.add_argument("--fp16", type=bool_flag, default=False, help="Run model with float16")
parser.add_argument("--batch_size", type=int, default=32, help="Number of sentences per batch")
parser.add_argument("--input_path", type=str, default="", help="Sentences to translate path")
parser.add_argument("--first_model_is_adapter", type=bool_flag, default=False, help="First model uses adapters")
# model / output paths
parser.add_argument("--model_path", type=str, default="", help="Model path")
parser.add_argument("--output_path", type=str, default="", help="Output path")
parser.add_argument("--beam", type=int, default=1, help="Beam size")
parser.add_argument("--length_penalty", type=float, default=1, help="length penalty")
# source language / target language
parser.add_argument("--src_lang", type=str, default="", help="Source language")
parser.add_argument("--tgt_lang", type=str, default="", help="Target language")
return parser
def generate_beam(decoders, src_encodeds, src_len, tgt_lang_id, beam_size, length_penalty, early_stopping, max_len=200, params=None):
assert params is not None
src_encs = []
bs = len(src_len)
n_words = params.n_words
src_len = src_len.unsqueeze(1).expand(bs, beam_size).contiguous().view(-1)
for i in range(len(src_encodeds)):
src_encodeds[i] = src_encodeds[i].unsqueeze(1).expand((bs, beam_size) + src_encodeds[i].shape[1:]).contiguous().view((bs * beam_size,) + src_encodeds[i].shape[1:])
generated = src_len.new(max_len, bs * beam_size)
generated.fill_(params.pad_index)
generated[0].fill_(params.eos_index)
generated_hyps = [BeamHypotheses(beam_size, max_len, length_penalty, early_stopping) for _ in range(bs)]
positions = src_len.new(max_len).long()
positions = torch.arange(max_len, out=positions).unsqueeze(1).expand_as(generated)
langs = positions.clone().fill_(tgt_lang_id)
beam_scores = src_encodeds[0].new(bs, beam_size).fill_(0)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view(-1)
cur_len = 1
caches = [{'slen': 0} for i in range(len(decoders))]
done = [False for _ in range(bs)]
while cur_len < max_len:
avg_scores = []
#avg_scores = None
for i, (src_enc, decoder) in enumerate(zip(src_encodeds, decoders)):
tensor = decoder.forward(
'fwd',
x=generated[:cur_len],
lengths=src_len.new(bs * beam_size).fill_(cur_len),
positions=positions[:cur_len],
langs=langs[:cur_len],
causal=True,
src_enc=src_enc,
src_len=src_len,
cache=caches[i]
)
assert tensor.size() == (1, bs * beam_size, decoder.dim)
tensor = tensor.data[-1, :, :] # (bs * beam_size, dim)
scores = decoder.pred_layer.get_scores(tensor) # (bs * beam_size, n_words)
scores = F.log_softmax(scores, dim=-1) # (bs * beam_size, n_words)
avg_scores.append(scores)
avg_scores = torch.logsumexp(torch.stack(avg_scores, dim=0), dim=0) - math.log(len(decoders))
#avg_scores.div_(len(decoders))
_scores = avg_scores + beam_scores[:, None].expand_as(avg_scores)
_scores = _scores.view(bs, beam_size * n_words)
next_scores, next_words = torch.topk(_scores, 2 * beam_size, dim=1, largest=True, sorted=True)
assert next_scores.size() == next_words.size() == (bs, 2 * beam_size)
next_batch_beam = []
for sent_id in range(bs):
# if we are done with this sentence
done[sent_id] = done[sent_id] or generated_hyps[sent_id].is_done(next_scores[sent_id].max().item())
if done[sent_id]:
next_batch_beam.extend([(0, params.pad_index, 0)] * beam_size) # pad the batch
continue
# next sentence beam content
next_sent_beam = []
# next words for this sentence
for idx, value in zip(next_words[sent_id], next_scores[sent_id]):
# get beam and word IDs
beam_id = idx // n_words
word_id = idx % n_words
# end of sentence, or next word
if word_id == params.eos_index or cur_len + 1 == max_len:
generated_hyps[sent_id].add(generated[:cur_len, sent_id * beam_size + beam_id].clone(), value.item())
else:
next_sent_beam.append((value, word_id, sent_id * beam_size + beam_id))
# the beam for next step is full
if len(next_sent_beam) == beam_size:
break
# update next beam content
assert len(next_sent_beam) == 0 if cur_len + 1 == max_len else beam_size
if len(next_sent_beam) == 0:
next_sent_beam = [(0, params.pad_index, 0)] * beam_size # pad the batch
next_batch_beam.extend(next_sent_beam)
assert len(next_batch_beam) == beam_size * (sent_id + 1)
# sanity check / prepare next batch
assert len(next_batch_beam) == bs * beam_size
beam_scores = beam_scores.new([x[0] for x in next_batch_beam])
beam_words = generated.new([x[1] for x in next_batch_beam])
beam_idx = src_len.new([x[2] for x in next_batch_beam])
# re-order batch and internal states
generated = generated[:, beam_idx]
generated[cur_len] = beam_words
for cache in caches:
for k in cache.keys():
if k != 'slen':
cache[k] = (cache[k][0][beam_idx], cache[k][1][beam_idx])
# update current length
cur_len = cur_len + 1
# stop when we are done with each sentence
if all(done):
break
tgt_len = src_len.new(bs)
best = []
for i, hypotheses in enumerate(generated_hyps):
best_hyp = max(hypotheses.hyp, key=lambda x: x[0])[1]
tgt_len[i] = len(best_hyp) + 1 # +1 for the <EOS> symbol
best.append(best_hyp)
# generate target batch
decoded = src_len.new(tgt_len.max().item(), bs).fill_(params.pad_index)
for i, hypo in enumerate(best):
decoded[:tgt_len[i] - 1, i] = hypo
decoded[tgt_len[i] - 1, i] = params.eos_index
# sanity check
assert (decoded == params.eos_index).sum() == 2 * bs
return decoded, tgt_len
def main(params):
# initialize the experiment
logger = initialize_exp(params)
parser = get_parser()
params = parser.parse_args()
models_path = params.model_path.split(',')
first_model_is_adapter = params.first_model_is_adapter
# generate parser / parse parameters
models_reloaded = []
for model_path in models_path:
models_reloaded.append(torch.load(model_path))
model_params = AttrDict(models_reloaded[0]['params'])
model_params.use_adapters = False
model_params.use_adapters_enc_dec_attention = False
logger.info("Supported languages: %s" % ", ".join(model_params.lang2id.keys()))
# update dictionary parameters
for name in ['n_words', 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index']:
setattr(params, name, getattr(model_params, name))
# build dictionary / build encoder / build decoder / reload weights
dico = Dictionary(models_reloaded[0]['dico_id2word'], models_reloaded[0]['dico_word2id'], models_reloaded[0]['dico_counts'])
params.src_id = model_params.lang2id[params.src_lang]
params.tgt_id = model_params.lang2id[params.tgt_lang]
encoders = []
decoders = []
def package_module(modules):
state_dict = OrderedDict()
for k, v in modules.items():
if k.startswith('module.'):
state_dict[k[7:]] = v
else:
state_dict[k] = v
return state_dict
for index, reloaded in enumerate(models_reloaded):
if first_model_is_adapter:
if index == 0:
model_params.use_adapters = True
model_params.use_adapters_enc_dec_attention = False
else:
model_params.use_adapters = False
model_params.use_adapters_enc_dec_attention = False
encoder = TransformerModel(model_params, dico, is_encoder=True, with_output=True).cuda().eval()
decoder = TransformerModel(model_params, dico, is_encoder=False, with_output=True).cuda().eval()
encoder.load_state_dict(package_module(reloaded['encoder']))
decoder.load_state_dict(package_module(reloaded['decoder']))
# float16
if params.fp16:
assert torch.backends.cudnn.enabled
encoder = network_to_half(encoder)
decoder = network_to_half(decoder)
encoders.append(encoder)
decoders.append(decoder)
# read sentences from stdin
src_sent = []
with open(params.input_path, 'r') as file1:
for line in file1:
# if 0 < len(line.strip().split()) < 200:
src_sent.append(line)
logger.info("Read %i sentences from sentences file.Writing them to a src file. Translating ..." % len(src_sent))
f = io.open(params.output_path + '.src_sent', 'w', encoding='utf-8')
for sentence in src_sent:
f.write(sentence)
f.close()
logger.info("Wrote them to a src file")
f = io.open(params.output_path, 'w', encoding='utf-8')
for i in range(0, len(src_sent), params.batch_size):
# prepare batch
word_ids = [torch.LongTensor([dico.index(w) for w in s.strip().split()])
for s in src_sent[i:i + params.batch_size]]
lengths = torch.LongTensor([len(s) + 2 for s in word_ids])
batch = torch.LongTensor(lengths.max().item(), lengths.size(0)).fill_(params.pad_index)
batch[0] = params.eos_index
for j, s in enumerate(word_ids):
if lengths[j] > 2: # if sentence not empty
batch[1:lengths[j] - 1, j].copy_(s)
batch[lengths[j] - 1, j] = params.eos_index
langs = batch.clone().fill_(params.src_id)
# encode source batch and translate it
encodeds = []
for encoder in encoders:
encoded = encoder('fwd', x=batch.cuda(), lengths=lengths.cuda(), langs=langs.cuda(), causal=False)
encoded = encoded.transpose(0, 1)
encodeds.append(encoded)
assert encoded.size(0) == lengths.size(0)
decoded, dec_lengths = generate_beam(decoders, encodeds, lengths.cuda(), params.tgt_id,
beam_size=params.beam,
length_penalty=params.length_penalty,
early_stopping=False,
max_len=int(1.5 * lengths.max().item() + 10), params=params)
# convert sentences to words
for j in range(decoded.size(1)):
# remove delimiters
sent = decoded[:, j]
delimiters = (sent == params.eos_index).nonzero().view(-1)
assert len(delimiters) >= 1 and delimiters[0].item() == 0
sent = sent[1:] if len(delimiters) == 1 else sent[1:delimiters[1]]
# output translation
source = src_sent[i + j].strip()
target = " ".join([dico[sent[k].item()] for k in range(len(sent))])
if (i+j)%100 == 0:
logger.info("Translation of %i / %i:\n Source sentence: %s \n Translation: %s\n" % (i + j, len(src_sent), source, target))
f.write(target + "\n")
f.close()
if __name__ == '__main__':
# generate parser / parse parameters
parser = get_parser()
params = parser.parse_args()
# check parameters
#assert os.path.isfile(params.model_path)
assert params.src_lang != '' and params.tgt_lang != '' and params.src_lang != params.tgt_lang
assert params.output_path and not os.path.isfile(params.output_path)
# translate
with torch.no_grad():
main(params)