-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconverter.m
98 lines (79 loc) · 2.92 KB
/
converter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
% Version 1.000
%
% Code provided by Ruslan Salakhutdinov
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied. As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application. All use of these programs is entirely at the user's own risk.
% This program reads raw MNIST files available at
% http://yann.lecun.com/exdb/mnist/
% and converts them to files in matlab format
% Before using this program you first need to download files:
% train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz
% t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz
% and gunzip them. You need to allocate some space for this.
% This program was originally written by Yee Whye Teh
% Work with test files first
fprintf(1,'You first need to download files:\n train-images-idx3-ubyte.gz\n train-labels-idx1-ubyte.gz\n t10k-images-idx3-ubyte.gz\n t10k-labels-idx1-ubyte.gz\n from http://yann.lecun.com/exdb/mnist/\n and gunzip them \n');
f = fopen('t10k-images.idx3-ubyte','r');
[a,count] = fread(f,4,'int32');
g = fopen('t10k-labels.idx1-ubyte','r');
[l,count] = fread(g,2,'int32');
fprintf(1,'Starting to convert Test MNIST images (prints 10 dots) \n');
n = 1000;
Df = cell(1,10);
for d=0:9,
Df{d+1} = fopen(['test' num2str(d) '.ascii'],'w');
end;
for i=1:10,
fprintf('.');
rawimages = fread(f,28*28*n,'uchar');
rawlabels = fread(g,n,'uchar');
rawimages = reshape(rawimages,28*28,n);
for j=1:n,
fprintf(Df{rawlabels(j)+1},'%3d ',rawimages(:,j));
fprintf(Df{rawlabels(j)+1},'\n');
end;
end;
fprintf(1,'\n');
for d=0:9,
fclose(Df{d+1});
D = load(['test' num2str(d) '.ascii'],'-ascii');
fprintf('%5d Digits of class %d\n',size(D,1),d);
save(['test' num2str(d) '.mat'],'D','-mat');
end;
% Work with trainig files second
f = fopen('train-images.idx3-ubyte','r');
[a,count] = fread(f,4,'int32');
g = fopen('train-labels.idx1-ubyte','r');
[l,count] = fread(g,2,'int32');
fprintf(1,'Starting to convert Training MNIST images (prints 60 dots)\n');
n = 1000;
Df = cell(1,10);
for d=0:9,
Df{d+1} = fopen(['digit' num2str(d) '.ascii'],'w');
end;
for i=1:60,
fprintf('.');
rawimages = fread(f,28*28*n,'uchar');
rawlabels = fread(g,n,'uchar');
rawimages = reshape(rawimages,28*28,n);
for j=1:n,
fprintf(Df{rawlabels(j)+1},'%3d ',rawimages(:,j));
fprintf(Df{rawlabels(j)+1},'\n');
end;
end;
fprintf(1,'\n');
for d=0:9,
fclose(Df{d+1});
D = load(['digit' num2str(d) '.ascii'],'-ascii');
fprintf('%5d Digits of class %d\n',size(D,1),d);
save(['digit' num2str(d) '.mat'],'D','-mat');
end;
dos('rm *.ascii');