-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
113 lines (101 loc) · 4.96 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import jax
import jax.numpy as jnp
import flax.linen as nn
from layers import ConvZeros
from layers import ActNorm, Conv1x1, AffineCoupling
from layers import squeeze, unsqueeze, Split
### Flow
class FlowStep(nn.Module):
nn_width: int = 512
key: jax.random.PRNGKey = jax.random.PRNGKey(0)
@nn.compact
def __call__(self, x, logdet=0, reverse=False):
out_dims = x.shape[-1]
if not reverse:
x, logdet = ActNorm()(x, logdet=logdet, reverse=False)
x, logdet = Conv1x1(out_dims, self.key)(x, logdet=logdet, reverse=False)
x, logdet = AffineCoupling(out_dims, self.nn_width)(x, logdet=logdet, reverse=False)
else:
x, logdet = AffineCoupling(out_dims, self.nn_width)(x, logdet=logdet, reverse=True)
x, logdet = Conv1x1(out_dims, self.key)(x, logdet=logdet, reverse=True)
x, logdet = ActNorm()(x, logdet=logdet, reverse=True)
return x, logdet
### Glow model
class GLOW(nn.Module):
K: int = 32 # Number of flow steps
L: int = 3 # Number of scales
nn_width: int = 512 # NN width in Affine Coupling Layer
learn_top_prior: bool = False # If true, learn prior N(mu, sigma) for zL
key: jax.random.PRNGKey = jax.random.PRNGKey(0)
def flows(self, x, logdet=0, reverse=False, name=""):
"""K subsequent flows. Called at each scale."""
for k in range(self.K):
it = k + 1 if not reverse else self.K - k
x, logdet = FlowStep(self.nn_width, self.key, name=f"{name}/step_{it}")(
x, logdet=logdet, reverse=reverse)
return x, logdet
@nn.compact
def __call__(self, x, reverse=False, z=None, eps=None, sampling_temperature=1.0):
"""Args:
* x: Input to the model
* reverse: Whether to apply the model or its inverse
* z (reverse = True): If given, use these as intermediate latents (deterministic)
* eps (reverse = True, z!=None): If given, use these as Gaussian samples which are later
rescaled by the mean and variance of the appropriate prior.
* sampling_temperature (reverse = True, z!=None): Sampling temperature
"""
## Inputs
# Forward pass: Save priors for computing loss
# Optionally save zs (only used for sanity check of reversibility)
priors = []
if not reverse:
del z, eps, sampling_temperature
z = []
# In reverse mode, either use the given latent z (deterministic)
# or sample them. For the first one, uses the top prior.
# The intermediate latents are sampled in the `Split(reverse=True)` calls
else:
if z is not None:
assert len(z) == self.L
else:
x *= sampling_temperature
if self.learn_top_prior:
# Assumes input x is a sample from N(0, 1)
# Note: the inputs to learn the top prior is zeros (unconditioned)
# or some conditioning e.g. class information.
# If not learnable, the model just uses the input x directly
# see https://github.com/openai/glow/blob/master/model.py#L109
prior = ConvZeros(x.shape[-1] * 2, name="prior_top")(jnp.zeros(x.shape))
mu, logsigma = jnp.split(prior, 2, axis=-1)
x = x * jnp.exp(logsigma) + mu
## Multi-scale model
logdet = 0
for l in range(self.L):
# Forward
if not reverse:
x = squeeze(x)
x, logdet = self.flows(x, logdet=logdet,
reverse=False,
name=f"flow_scale_{l + 1}/")
if l < self.L - 1:
zl, x, prior = Split(
key=self.key, name=f"flow_scale_{l + 1}/")(x, reverse=False)
else:
zl, prior = x, None
if self.learn_top_prior:
prior = ConvZeros(zl.shape[-1] * 2, name="prior_top")(jnp.zeros(zl.shape))
z.append(zl)
priors.append(prior)
# Reverse
else:
if l > 0:
x = Split(key=self.key, name=f"flow_scale_{self.L - l}/")(
x, reverse=True,
z=z[-l - 1] if z is not None else None,
eps=eps[-l - 1] if eps is not None else None,
temperature=sampling_temperature)
x, logdet = self.flows(x, logdet=logdet, reverse=True,
name=f"flow_scale_{self.L - l}/")
x = unsqueeze(x)
## Return
return x, z, logdet, priors