-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugmentation.py
119 lines (98 loc) · 4.72 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
'''
Data augmentation with specialized embedding space
'''
import codecs
import numpy as np
import data_handler
import argparse
from utils import load_specialized_embeddings
from utils import select_random_attributes
def mat_normalize(mat, norm_order=2, axis=1):
return mat / np.transpose([np.linalg.norm(mat, norm_order, axis)])
def cosine(a, b):
norm_a = mat_normalize(a)
norm_b = mat_normalize(b)
cos = np.dot(norm_a, np.transpose(norm_b))
return cos
def get_top_k_similar(term, similarity_matrix, word2index, vocab_list, k, test_vocab):
index = word2index[term]
similarities = similarity_matrix[index]
top_k_indices = similarities.argsort()[-(k+len(test_vocab)):][::-1]
top_k_terms = []
for i in top_k_indices:
if i != index and vocab_list[i] not in test_vocab:
top_k_terms.append(vocab_list[i])
if len(top_k_terms) == k:
break
return top_k_terms
def augment_term_list(original_list, similarity_matrix, word2index, vocab_list, k, test_vocab):
augmented_list = []
for term in original_list:
if term in word2index:
top_k = get_top_k_similar(term, similarity_matrix, word2index, vocab_list, k, test_vocab)
augmented_list.append(top_k)
else:
print("Not in vocab: %s" % term)
augmented_list = list(set(data_handler.flatten(augmented_list)))
return augmented_list
def augment_weat_lists(path_to_weat="./data/weat_1.txt", path_to_embeddings="/home/anlausch/post-specialized-embeddings/postspec/ft_postspec.txt", k=2, output_path="", random_attributes=False, switch_targets_and_attributes=False):
t1, t2, a1, a2 = data_handler.fuse_stimuli([path_to_weat])
embbedding_dict, vocab_list, vector_list, word2index = load_specialized_embeddings(path_to_embeddings)
similarity_matrix = cosine(vector_list, vector_list)
weat_dict = {}
test_vocab = list(set(t1 + t2 + a1 + a2))
if switch_targets_and_attributes:
t1, a1 = a1, t1
t2, a2 = a2, t2
weat_dict["T1:"] = augment_term_list(t1, similarity_matrix, word2index, vocab_list, k, test_vocab)
weat_dict["T2:"] = augment_term_list(t2, similarity_matrix, word2index, vocab_list, k, test_vocab)
if not random_attributes:
weat_dict["A1:"] = augment_term_list(a1, similarity_matrix, word2index, vocab_list, k, test_vocab)
weat_dict["A2:"] = augment_term_list(a2, similarity_matrix, word2index, vocab_list, k, test_vocab)
else:
attributes = select_random_attributes(vocab_list, 60, path_to_weat)
weat_dict["A1:"] = attributes[:30]
weat_dict["A2:"] = attributes[30:]
print("Length of augmentation for T1: %s" % str(len(weat_dict["T1:"])))
print("Length of augmentation for T2: %s" % str(len(weat_dict["T2:"])))
print("Length of augmentation for A1: %s" % str(len(weat_dict["A1:"])))
print("Length of augmentation for A2: %s" % str(len(weat_dict["A2:"])))
with codecs.open(output_path, "w", "utf8") as f:
for key, value in weat_dict.items():
f.write(key + " ")
f.write(' '.join(value))
f.write('\n')
f.close()
def test_vocab_overlap(path_1, path_2):
"""
:param path_1:
:param path_2:
:return:
>>> test_vocab_overlap("./data/weat_8.txt","./data/weat_8_aug_postspec_5_new.txt")
"""
l1_t1, l1_t2, l1_a1, l1_a2 = data_handler.fuse_stimuli([path_1])
l2_t1, l2_t2, l2_a1, l2_a2 = data_handler.fuse_stimuli([path_2])
l1 = list(set(l1_t1 + l1_t2 + l1_a1 + l1_a2))
l2 = list(set(l2_t1 + l2_t2 + l2_a1 + l2_a2))
print(list(set(l1).intersection(l2)))
def main():
def boolean_string(s):
if s not in {'False', 'True', 'false', 'true'}:
raise ValueError('Not a valid boolean string')
return s == 'True' or s == 'true'
parser = argparse.ArgumentParser(description="Running DEBIE's Augmentation")
parser.add_argument("--path_to_weat", type=str, help="Path to the WEAT input file", required=True)
parser.add_argument("--path_to_embeddings", type=str, default=None,
help="Path to the embedding files to augment with", required=True)
parser.add_argument("--k", type=int, default=None,
help="Top k neighbors to augment with", required=True)
parser.add_argument("--output_path", type=str, default=None,
help="Output path", required=True)
parser.add_argument("--random_attributes", type=boolean_string, default="False",
help="Whether to randomly sample the attributes", required=True)
parser.add_argument("--switch_targets_and_attributes", type=boolean_string, default="False",
help="Whether to switch target and attribute lists after the augmentation", required=True)
args = parser.parse_args()
augment_weat_lists(args.path_to_weat, args.path_to_embeddings, args.k, args.output_path, args.random_attributes, args.switch_targets_and_attributes)
if __name__ == "__main__":
main()