forked from westerbaan/theses
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathasols.tex
2868 lines (2718 loc) · 88.4 KB
/
asols.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% vim: set indentexpr= :
\documentclass[b5page]{book}
\input{common}
\externaldocument{a}
\externaldocument{b}
\newcommand{\TODO}[1]{\textcolor{darkred}{\textsc{\underline{todo}}}}
\begin{document}
\appendix
\chapter{Solutions, Addenda, Errata}
\begin{erratum}{parsec-40.160}%
It should be assumed that $T$ is bounded.
\end{erratum}
\begin{erratum}{parsec-50.60}%
Don't follow the hints.
\end{erratum}
\begin{erratum}{parsec-60.30}%
``$\|x_\infty-x\|\leq \varepsilon$'' should read ``$\|x_\infty-x_n\|\leq\varepsilon$''.
\end{erratum}
\begin{erratum}{parsec-110.60}
``$\|a\| < \|b\|$'' in point~2
should read ``$\|a\|< \|b^{-1}\|^{-1}$''.
\end{erratum}
\begin{erratum}{parsec-110.150}
In the hint for point 3,
``$a^n+1 = \prod_{k=1}^n a+\zeta^{2k+1}$''
should read
``$a^n+1 = \prod_{k=1}^n a-\zeta^{2k+1}$''.
\end{erratum}
\begin{erratum}{parsec-120.30}
``$(f\cdot g)'=f'\cdot g + g'\cdot f$'' should
read ``$(f\cdot g)' = f'\cdot g + f\cdot g'$''.
\end{erratum}
\begin{erratum}{parsec-200.30}
Where ``$\|f(a)\|\leq f(1)\,\|a\|\leq\|f(1)\|\,\|a\|$
by \sref{parsec-170.60}''
is written
one should read
``$\|f(a)\|\leq\|f(1)\|\,\|a\|$ by \sref{parsec-170.60}''.
\end{erratum}
\begin{erratum}{parsec-220.60}
In the definition of~$J$,
one should read ``$q(\Real{b})$''
and~``$q(\Imag{b})$''
instead of~``$\Real{b}$''
and~``$\Imag{b}$'', respectively.
\end{erratum}
\begin{erratum}{parsec-230.50}
It should be assumed that $a$ and~$b$ are
positive in point~3.
\end{erratum}
\begin{erratum}{parsec-270.120}
It's erroneously assumed that~$\left|a\right|\in J$.
Here's a corrected proof:
We'll show first that for~$a,b\in\scrA_+$
with~$ab=0$ either $a\in I$ or~$b\in I$.
To this end, consider
the Riesz ideal~$I+(a)_m$,
where~$(a)_m$ is the Riesz ideal generated by~$a$
from~\sref{parsec-270.100}(1).
Since~$I$ is maximal, either~$I+(a)_m=I$
or
$I+(a)_m=\scrA$.
In the former case, $a\in I$,
and so we'd be done.
So we assume that~$I+(a)_m=\scrA$.
In particular, $1 \in (I+(a)_m)$,
and so~$1=x+a'$ for some~$x\in I$ and~$a'\in (a)_m$.
Upon taking the real part
we see that we may assume~$x$ and~$a'$ to be self-adjoint.
By definition of~$(a)_m$ there's $n\in \N$ with
$\left|a'\right|\leq na$.
Then, $1=\left|1\right|=\left|x+a'\right|
\leq \left|x\right| + \left|a'\right|
\leq \left|x\right| + na$.
By a similar reasoning for~$b$,
we can find $y\in I\cap\Real{\scrA}$
and~$m\in\N$ with $1\leq\left|y\right|+mb$.
Then,
using~\sref{parsec-230.70}(2),
\begin{alignat*}{3}
1 \ \leq\ (\left|x\right| + na)(\left|y\right|+mb)
\ &= \ \left|x\right|\left|y\right| \,+\,
na\left|y\right|\,+\, mb\left|x\right|\,+\,nmab\\
\ &= \ \left|x\right|\left|y\right| \,+\,
na\left|y\right|\,+\, mb\left|x\right|
\ \in\ I\quad \text{by \sref{parsec-270.80}.}
\end{alignat*}
But then~$1\in I$, which is absurd.
Thus either~$I+(a)_m=I$ and thus~$a\in I$,
or~$I+(b)_m = I$ and thus~$b\in I$.
To see that~$I$ is a maximal order ideal,
let~$J$ be a proper order ideal with~$I\subseteq J$.
We must show that~$J=I$.
It suffices to show that~$J$ is a Riesz ideal
(since~$I$ is a maximal Riesz ideal).
Let~$a\in \Real{J}$ be given;
we must show that~$\left|a\right|\in J$.
Recall that $a=a_+-a_-$ and $a_+a_-=0$.
Thus the previous discussion either~$a_+\in I\subseteq J$
or~$a_-\in I\subseteq J$.
In fact, since~$a_+-a_- = a\in J$,
both $a_+\in J$ and~$a_-\in J$.
But then~$a_++a_- = \left|a\right| \in J$.
Hence~$J$ is a Riesz ideal,
and so~$I=J$.
Thus~$I$ is a maximal order ideal.
\end{erratum}
\begin{erratum}{parsec-280.20}
In point 1,
``$ac=ca$'' should read
``$ac=ca$ and $a^*c=ca^*$''.
\end{erratum}
\begin{addendum}{parsec-280.40}
The statement ``$(a+\frac{1}{n})^\alpha$
norm converges to $a^\alpha$ as $n\to\infty$''
lacks an argument.
Here is one.
First note that~$a$ and all~$a+\frac{1}{n}$
are elements of a commutative $C^*$-subalgebra~$\scrB$
of~$\scrA$.
We'll show, more generally,
that given any uniformly continuous map $f\colon D\to\C$
on some subset~$D$ of~$\C$,
the assignment $b\mapsto f(b)$
where~$b\in \scrB$ with~$\spec(b)\subseteq D$
is uniformly continuous
with respect to the norm on~$\scrA$.
So let~$\varepsilon>0$ be given.
Since~$f$ is uniformly continuous,
there's $\delta>0$ with $\left|f(x)-f(y)\right|\leq\varepsilon$
for all~$x,y\in D$ with $\left|x-y\right|\leq \delta$.
Now, let~$a,b\in \scrB$ with
$\spec(a),\spec(b)\subseteq D$
and~$\left\|a-b\right\|\leq \delta$ be given. Then:
\begin{alignat*}{3}
\|f(a)-f(b)\|
\ &= \ \sup_{\varphi\in \spec(\scrB)}
\left|\,\varphi(\,f(a)\,-\,f(b)\,)\,\right|\qquad
&&\text{by~\sref{parsec-270.180}}
\\
\ &=\ \sup_{\varphi\in\spec(\scrB)}\left|
\,\varphi(f(a))\,-\,\varphi(f(b))\,\right|\qquad
&&
\\
\ &=\ \sup_{\varphi\in\spec(\scrB)}\left|
\,f(\varphi(a))\,-\,f(\varphi(b))\,\right|\qquad
&&\text{by~\sref{parsec-280.20}4}
\\
\ &\leq\ \varepsilon,
\end{alignat*}
because $\left|\varphi(a)-\varphi(b)\right|
\leq \|\varphi\|\,\|a-b\|\leq \delta$,
using here that~$\|\varphi\|\leq 1$
(see~\sref{parsec-200.50}).
\end{addendum}
\begin{erratum}{parsec-341.50}
In point~6, ``$u=\sqrt{a^{-1}(a^{-1})^*}$''
should read ``$u=a\sqrt{a^{-1}(a^{-1})^*}$''.
\end{erratum}
\begin{erratum}{parsec-370.50}
The strong operator topology is the topology
induced by the seminorms $T\mapsto \|Tx\|$ where~$x\in \scrH$
(which is not always the least topology that makes
all these seminorms continuous.)
\end{erratum}
\begin{erratum}{parsec-430.20}
The remark in point~3 that~$a_\alpha^*a_\alpha$
is norm-bounded is unwarranted.
\end{erratum}
\begin{erratum}{parsec-330.30}
Don't show that~$M_nf$ needn't be bounded
in point~3,
but on the contrary, that it is bounded by~$n^2\|f\|$.
\end{erratum}
\begin{erratum}{parsec-750.30}
``we have $0\leq a_{nm}\leq \frac{1}{2}$''
should read ``we have $0\leq a_{nm}\leq 1$''.
\end{erratum}
\begin{solution}{parsec-40.30}%
Let~$\scrX$, $\scrY$ and~$\scrZ$ be normed (complex) vector spaces.
\begin{enumerate}
\item
To show that the operator norm does indeed
give a norm on~$\scrB(\scrX,\scrY)$,
the following
three observations
regarding $S,T\in\scrB(\scrX,\scrY)$
suffice.
\begin{enumerate}
\item
We have $\|S+T\|\leq \|S\|+\|T\|$.
To see this,
note that
given~$x\in \scrX$,
we have $\|Sx\|\leq \|S\|\|x\|$
and $\|Tx\|\leq \|T\|\|x\|$---because $\|S\|$ and $\|T\|$ are bounds
for~$S$ and~$T$, respectively,---and so
\begin{equation*}
\|(S+T)x\|
\ \leq\ \|Sx\|+\|Tx\|
\ \leq\ (\|S\|+\|T\|)\|x\|.
\end{equation*}
Thus~$\|S\|+\|T\|$ is a bound for~$S+T$.
Since~$\|S+T\|$ is the least bound for~$S+T$,
we get~$\|S+T\|\leq \|S\|+\|T\|$.
\item
We have
$\|\lambda S\|=\left|\lambda \right| \|S\|$
for any $\lambda \in \C$.
Surely this statement is correct when~$\lambda= 0$.
To see why it's correct for~$\lambda \neq 0$,
note that
$r\mapsto \left|\lambda\right| r$
sends bounds of~$S$ to bounds of~$\lambda S$.
Indeed,
if~$r\in[0,\infty)$ is a bound of~$S$,
then $\|Sx\|\leq r\|x\|$
for all~$x\in \scrX$,
and so~$\|\lambda Sx\| \equiv
\left|\lambda \right|\|Sx\|\leq \left|\lambda\right| r \|x\|$
for all~$x\in\scrX$,
that is, $\left|\lambda\right|r$
is a bound for~$\lambda S$.
Similarly~$r\mapsto \left|\lambda\right|^{-1} S$
sends bounds of $\lambda S$
to bounds of~$S$.
Since the two aforementioned maps are each other's inverse,
and both are order preserving,
$r\mapsto \left|\lambda \right|r$
gives an order isomorphism from
the bounds of~$S$ to the bounds of~$\lambda S$,
and, in particular,
sends the least bound of~$S$ (being $\|S\|$)
to the least bound of~$\lambda S$
(being~$\|\lambda S\|$),
that is,
$\left|\lambda\right|\|S\|=\|\lambda S\|$.
\item
We have $\|S\|=0$ iff~$S=0$.
Indeed, the following are equivalent:
$\|S\|=0$; the number~$0$ is a bound for~$S$;
$\|Sx\|\leq 0$ for all~$x\in\scrX$;
$Sx=0$ for all~$x\in\scrX$;
$S=0$.
\end{enumerate}
\item
Since $\|STx\|\leq \|S\| \|Tx\|
\leq \|S\|\|T\|\|x\|$
for all~$x\in \scrX$
the operator $ST$ is bounded by
$\|S\|\|T\|$.
\item
Indeed, $ \|\id x \|\equiv \|x\|\leq 1\cdot\|x\|$
for all~$x\in\scrX$.
\end{enumerate}
\end{solution}
\begin{solution}{parsec-40.40}%
Recall that we must prove that
\begin{equation*}
r\|T\|\ = \ \sup_{x\in (\scrX)_r} \|Tx\|.
\end{equation*}
Since $(\scrX)_r \equiv \{x\in\scrX\colon \|x\|\leq r\}
= \{rx\colon x\in (\scrX)_1\}$
the problem becomes
\begin{equation*}
r\|T\|\ = \ \sup_{x\in (\scrX)_1} \|Trx\|
\,\equiv\, r\sup_{x\in (\scrX)_1} \|Tx\|.
\end{equation*}
So we've reduced the
problem to the case~$r=1$, that is, to showing that
\begin{equation*}
\|T\|\ = \ \sup_{x\in (\scrX)_1} \|Tx\|.
\end{equation*}
Since for~$x\in (\scrX)_1$
we have $\|x\|\leq 1$,
and so~$\|Tx\|\leq \|T\|\,\|x\|\leq \|T\|$,
we see that~$\sup_{x\in (\scrX)_1} \|Tx\|\leq \|T\|$.
For the other direction,
$\|T\|\leq \sup_{x\in (\scrX)_1} \|Tx\|$,
it suffices to show that
$r:=\sup_{x\in(\scrX)_1} \|Tx\|$
is a bound for~$T$,
that is, we must show given~$x\in\scrX$
that $\|Tx\|\leq r\|x\|$.
When~$x=0$ this is obvious, so we'll assume that~$x\neq 0$.
Then~$\| \,x\|x\|^{-1}\,\|\leq 1$,
so $\|x\|^{-1} \|Tx\|\equiv \|\,T x \|x\|^{-1}\, \| \leq r$,
and thus $\|Tx\|\leq r\|x\|$,
making $r$ is a bound for~$T$.
\end{solution}
\begin{solution}{parsec-40.100}%
Taking~$y:=x-x'$ we see that
$\|y\|^2 = \left<y,y\right>
= \left<y,x\right> - \left<y,x'\right> = 0$,
so~$\|y\|=0$,
so~$y\equiv x-x'=0$,
and thus~$x=x'$.
For the second part,
let~$T_1,T_2\colon \scrH\to\scrK$
be operators between pre-Hilbert spaces~$\scrH$
and~$\scrK$
that are both adjoint to an operator~$S\colon \scrK\to\scrH$.
We must show that~$T_1=T_2$.
Given $x\in\scrH$ we have
\begin{equation*}
\left<T_1x,y\right>
\ = \
\left<x,Sy\right>
\ = \
\left<T_2x,y\right>
\qquad
\text{for all~$y\in\scrK$,}
\end{equation*}
and so~$T_1x=T_2x$ by the previous part.
Whence~$T_1=T_2$.
\end{solution}
\begin{solution}{parsec-40.120}%
We prove slightly more than was requested.
Let~$\scrH$, $\scrK$ and~$\scrL$ be pre-Hilbert spaces.
\begin{enumerate}
\item
Let~$T\colon \scrH\to\scrK$ be an adjointable operator,
so we know that~$T$ is adjoint to some (by~\sref{parsec-40.100}
unique) operator~$T^*\colon \scrK\to\scrH$.
We must show that $T^*$ is adjoint to~$T$ too.
Let~$x\in\scrH$ and~$y\in\scrK$ be given.
Since~$T$ is adjoint to~$T^*$,
we know that~$\left<Tx,y\right>=\left<x,T^*y\right>$,
and so taking the complex conjugate, we get
\begin{equation*}
\left<y,Tx\right>\ =\
\overline{\left<Tx,y\right>}
\ =\
\overline{\left<x,T^*y\right>}
\ =\ \left<T^*y,x\right>,
\end{equation*}
and see that~$T^*$ is adjoint to~$T$.
Thus~$T^{**}=T$ by definition, \sref{parsec-40.80}.
\item
Given adjointable operators
$S,T\colon \scrH\to\scrK$
and~$x\in \scrH$ and $y\in \scrK$,
\begin{equation*}
\left<(S+T)x,y\right>
\ =\ \left<Sx,y\right>\,+\,\left<Tx,y\right>
\ =\ \left<x,S^*y\right>\,+\,\left<x,T^*y\right>
\ =\ \left<x,(S^*+T^*)y\right>,
\end{equation*}
so~$S+T$ is adjoint to~$S^*+T^*$,
and thus~$(S+T)^*=S^*+T^*$.
Given an adjointable operator~$S\colon \scrH\to\scrK$,
$\lambda\in\C$, $x\in\scrH$, and~$y\in\scrK$,
\begin{equation*}
\left<\lambda Sx,y\right>
\ = \
\overline{\lambda} \left<Sx, y\right>
\ = \
\overline{\lambda} \left<x, S^*y\right>
\ = \
\left<x, \overline{\lambda}S^*y\right>,
\end{equation*}
so~$\lambda S$ is adjoint to $\overline{\lambda}S^*$,
and thus $(\lambda S)^*=\overline{\lambda}S^*$.
\item
Given adjointable operators
$S\colon \scrK\to\scrL$
and $T\colon \scrH\to\scrK$,
and
$x\in\scrH$ and $y\in\scrL$,
we have
\begin{equation*}
\left<STx,y\right>
\ = \ \left<Tx,S^*y\right>
\ = \ \left<x,T^*S^*y\right>,
\end{equation*}
so~$ST$ is adjoint to~$T^*S^*$,
and thus~$(ST)^*=T^*S^*$.
\end{enumerate}
\end{solution}
\begin{solution}{parsec-40.150}%
We'll check the first two requirements
for $\|x\|=\smash{\sqrt{\left<x,x\right>}}$
to give a seminorm first.
Given $x\in V$,
we have $\left<x,x\right>\geq 0$,
so~$\|x\|\equiv \smash{\sqrt{\left<x,x\right>}}\geq 0$.
Given $x\in V$ and $\lambda\in \C$,
we have $\left\|\lambda x\right\|^2
= \left<\lambda x,\lambda x\right> = \overline{\lambda}\left<x,x\right>
\lambda = \left|\lambda\right|^2\|x\|^2\geq 0$,
so
we get~$\|\lambda x\| = \left|\lambda\right|\|x\|$
by taking the square root.
Verifying that the triangle inequality holds takes some
preparations.
As the hint suggests, we prove the Cauchy--Schwarz inequality first.
For this, we must given $x,y\in V$ prove
that $\left|\left<x,y\right>\right|^2 \leq \left<x,x\right>
\left<y,y\right>$.
This inequality follows
by applying~\sref{positive-2x2matrix}
to the matrix
$\smash{\bigl(\begin{smallmatrix}
\smash{\left<x,x\right>} & \smash{\left<x,y\right>} \\
\smash{\left<y,x\right>} & \smash{\left<y,y\right>}
\end{smallmatrix}\bigr)}$,
which is positive,
as for all~$u,v\in\C$,
\begin{alignat*}{3}
(
\begin{smallmatrix}
\bar{u} & \bar{v}
\end{smallmatrix})
\
\bigl(
\begin{smallmatrix}
\smash{\left<x,x\right>} & \smash{\left<x,y\right>} \\
\smash{\left<y,x\right>} & \smash{\left<y,y\right>}
\end{smallmatrix}\bigr)
\ \bigl(
\begin{smallmatrix}
u \\ v
\end{smallmatrix}
\bigr)
\ &=\
\bar{u}u\left<x,x\right>\,+\,
\bar{u}v\left<x,y\right> \,+\,
u\bar{v}\left<y,x\right> \,+\,
\bar{v}v\left<y,y\right>
\\
&=\ \left<\,ux+vy,\,ux+vy\,\right>\,\geq \,0.
\end{alignat*}
Upon taking the square root
the Cauchy--Schwarz inequality
takes the forms
\begin{equation*}
\left|\left<x,y\right>\right|
\ \leq\ \|x\|\,\|y\|\qquad\text{for all }x,y\in V.
\end{equation*}
Next, note that~$\bar{z}+z \leq 2\left|z\right|$ for any~$z\in\C$,
because writing $z\equiv a+ib$,
we have $\left|\bar{z}+z\right|^2=(\bar{z}+z)^2 = 4a^2 \leq 4(a^2 + b^2) = 4\left|z\right|^2$,
and so $\bar{z}+z \leq \left|\bar{z}+z\right|\leq 2\left|z\right|$.
In particular, we have,
for all~$x,y\in V$,
\begin{equation*}
\left<x,y\right>+\left<y,x\right>
\ \leq\ 2\left|\left<x,y\right>\right|\ \leq\
2 \|x\|\,\|y\|.
\end{equation*}
Given $x,y\in V$,
the triangle inequality,
$\|x+y\|\leq \|x\|+\|y\|$,
holds,
because
\begin{alignat*}{3}
\|x+y\|^2\ &=\
\left<x+y,x+y\right>
\ =\ \left<x,x\right>\,+\,
\left<x,y\right>\,+\,
\left<y,x\right>\,+\,
\left<y,y\right> \\
&\leq \ \left<x,x\right>\,+\,
2\|x\|\,\|y\|
\,+\,
\left<y,y\right>
\quad\equiv\
\|x\|^2 \,+\, 2\|x\|\,\|y\| \,+\, \|y\|^2\\
\ &=\ (\|x\|+\|y\|)^2.
\end{alignat*}
Whence~$\|x\|=\smash{\sqrt{\left<x,x\right>}}$ gives
a seminorm on~$V$.
Recall that for~$\|\,\cdot\,\|$ to be a \emph{norm},
the additional condition
$\|x\|=0\implies x=0$
for all~$x\in V$
must be met.
This is the case when
$\left<\,\cdot\,,\,\cdot\,\right>$
is definite,
because
$\|x\|=0$
entails $0=\|x\|^2=\left<x,x\right>$,
which, by definiteness of~$\left<\,\cdot\,,\,\cdot\,\right>$,
entails $x=0$.
Let~$x,y\in V$ be given.
To complete this exercise we must establish three
identities.
\emph{Pythagoras' theorem}
holds since $\left<x,y\right>=0$ implies
\begin{alignat*}{3}
\|x+y\|^2\ \equiv \ \left<x+y,x+y\right>
\ &=\
\left<x,x\right>
\,+\, \left<x,y\right>
\,+\, \left<y,x\right>
\,+\, \left<y,y\right>\\
\ &=\
\left<x,x\right>\,+\,\left<y,y\right>
\ = \ \|x\|^2 + \|y\|^2.
\end{alignat*}
Similar to the first line of the display above, we have,
(for any~$x,y\in V$,)
\begin{equation*}
\|x-y\|^2\ =\
\left<x,x\right>
\,-\, \left<x,y\right>
\,-\, \left<y,x\right>
\,+\, \left<y,y\right>.
\end{equation*}
Taking the average of these two equations gives the \emph{parallelogram law}:
\begin{equation*}
\textstyle \frac{1}{2}(\ \|x+y\|^2\,+\,\|x-y\|^2\ )
\ =\
\left<x,x\right>
\,+\, \left<y,y\right>\ \equiv\
\|x\|^2 + \|y\|^2.
\end{equation*}
Concerning the \emph{polarisation identity},
note that for any~$n$, we have
\begin{equation*}
i^n\left<i^nx+y,i^nx+y\right>
\ = \ i^n\left<x,x\right>
\,+\, \left<x,y\right>
\,+\, (-1)^n\left<y,x\right>
\,+\, i^n\left<y,y\right>.
\end{equation*}
Since~$\sum_{n=0}^3 i^n = 0$
and $\sum_{n=0}^3 (-1)^n=0$,
we get
\begin{equation*}
\textstyle
\sum_{n=0}^3i^n\left\|i^nx+y\right\|^2
\ = \ 4\left<x,y\right>.
\end{equation*}
\end{solution}
\begin{solution}{parsec-40.180}%
Let~$\scrS \subseteq \scrB(\scrH)$
denote the set of bounded adjointable operators $\scrH\to\scrH$.
Since by Exercise~\sref{parsec-40.120},
a linear combination
of adjointable operators is again adjointable,
$\scrS$ is a linear subspace of~$\scrB(\scrH)$.
To show that~$\scrS$ is a closed subset of~$\scrB(\scrH)$,
we must prove that
the limit~$T$ in $\scrB(\scrH)$
of
a
sequence $T_1,T_2,\dotsc$
in~$\scrS$
is adjointable.
Note that the sequence $T_1^*,\,T_2^*,\,\dotsc$
is Cauchy, because,
by~\sref{parsec-40.160}, for all~$n,m$,
\begin{equation*}
\|T_n^*-T_m^*\|\ =\ \|(T_n-T_m)^*\|\ =\ \|T_n-T_m\|.
\end{equation*}
Since~$\scrB(\scrH)$ is complete
by~\sref{parsec-40.50},
we may define $S:=\lim_n T_n^*$.
We claim that~$T$ is adjoint to~$S$.
Let~$x,y\in \scrH$ be given.
To prove our claim,
we must show that
that~$\left<Tx,y\right> = \left<x,Sy\right>$.
Note that $T_n^*y$ converges to~$Sy$ as~$n\to\infty$,
because~$\|T_n^*y-Sy\|\leq \|T_n^*-S\|\,\|x\|$
and $\|T_n^*-S\|$ vanishes as~$n$ increases
by definition of~$S$.
As a result,
$\lim_n \left<x,T_n^*y\right> = \left<x,Sy\right>$.
Note that we use here
that the map $\left<x,\,\cdot\,\right>$,
being bounded by Cauchy--Schwarz
(\sref{parsec-40.150}),
is continuous.
On the other hand,
by a similar reasoning,
$\left<x,T_n^*y\right>
\equiv \left<T_nx,y\right>$
converges to~$\left<Tx,y\right>$ too
as~$n$ increases,
and so~$\left<x,Sy\right>=\left<Tx,y\right>$.
Whence~$T$ is adjoint to~$S$,
and thus~$\scrS$ is closed.
\end{solution}
\begin{solution}{parsec-40.190}%
That~$\ketbra{x}{y}\equiv \left<y,\,\cdot\,\right>x\colon \scrH\to\scrH$
is linear is pretty obvious.
Since $\|\,\ketbra{x}{y}z\,\|
= \|\left<y,z\right>x\|
=\left|\left<y,z\right>\right|\,\|x\|
\leq \|y\|\,\|z\|\,\|x\|$
for all~$z\in\scrH$,
we see that~$\ketbra{x}{y}$
is bounded by~$\|y\|\,\|x\|$,
and so~$\|\ketbra{x}{y}\|\leq \|x\|\,\|y\|$.
For the other direction,
note that $\|\ketbra{x}{y}\| \,\|y\|\geq
\|\ketbra{x}{y}y\|=\|\left<y,y\right>x\|
= \|y\|^2\,\|x\|$,
and so~$\|\ketbra{x}{y}\|\geq \|y\|\,\|x\|$.
(Even when~$\|y\|=0$.)
Whence $\|\ketbra{x}{y}\|=\|x\|\,\|y\|$.
Finally, $\ketbra{x}{y}$
is adjoint~$\ketbra{y}{x}$,
because, for all~$w,z\in\scrH$,
\begin{equation*}
\left<\,\ketbra{x}{y}z,\, w\,\right>
\ = \
\left<z,y\right>\,\left<x,w\right>
\ = \
\left<\, z,\,(\ketbra{y}{x}w)\,\right>.
\end{equation*}
\end{solution}
\begin{solution}{parsec-50.30}%
Let~$x$ be an element of~$\ell^2\backslash c_{00}$
(so $x_n$ is non-zero for infinitely many~$n$s.)
We must show that there are no element of~$c_{00}$ with minimal
distance to~$x$.
So let~$y$ be an element of~$c_{00}$,
and suppose (towards a contradiction)
that~$\|x-y\|\leq \|x-y'\|$
for all~$y'\in c_{00}$.
Since~$y$ is in $c_{00}$,
there's~$N$ such that~$y_n=0$ for all~$n> N$.
We claim that~$x_n=y_n$ for all~$n\leq N$.
Indeed, (if not) define $y'\in c_{00}$
by $y_n' = x_n$ for all~$n\leq 0$, and~$y_n'=0$ for all~$n >N$.
Then
\begin{alignat*}{3}
\textstyle
\|x-y'\|^2\ &=\
\textstyle
\sum_{n=N+1}^\infty \left|x_n\right|^2\\
\ &\leq \
\textstyle
\sum_{n=0}^N \left|x_n-y_n\right|^2
\ +\ \sum_{n=N+1}^\infty \left|x_n\right|^2
\ = \ \|x-y\|^2.
\end{alignat*}
Thus~$\|x-y'\|\leq \|x-y\|$.
But since~$y$ is assumed to have minimal
distance to~$x$ among the elements of~$c_{00}$,
we already had $\|x-y\|\leq \|x-y'\|$,
and so~$\|x-y\|=\|x-y'\|$.
Whence~$\sum_{n=0}^N \left|x_n-y_n\right|^2
= 0$,
and so~$x_n=y_n$ for all~$n\leq N$.
In particular, $y=y'$.
It's now easy to find a better approximation
of~$x$ in~$c_{00}$ than~$y$.
Indeed, since~$x_n$ is non-zero for infinitely many~$n$s,
there's an~$M\geq 0$ with
\begin{equation*}
\textstyle
\sum_{n=M+1}^\infty \left|x_n\right|^2
\ <\ \sum_{n=N+1}^\infty \left|x_n\right|^2.
\end{equation*}
Writing $y''$ for the element of~$c_{00}$
with $y_n''=x_n$ for all~$n\leq M$ and~$y_n''=0$
for all~$n > M$,
we have
$\|x-y''\|^2=\sum_{n=M+1}^\infty \left|x_n\right|^2
< \sum_{n=N+1}^\infty \left|x_n\right|^2 = \|x-y'\|^2 = \|x-y\|^2$,
which contradicts $\|x-y\|\leq \|x-y''\|$.
Hence no such~$y$ exists.
\end{solution}
\begin{solution}{parsec-50.60}%
Surely, if $y$ is closest to~$x$
among all elements of~$C$,
it is among all elements of~$y\C\subseteq C$.
Whence~$y$ is a projection of~$x$ on~$y\C$.
We claim that~$\|y\|^2 = \left<x,y\right>$. When~$y=0$
this is obvious, so we may assume that~$y\neq 0$,
so that we can define $e:= y\|y\|^{-1}$.
Since~$y$ is the projection of~$x$ on~$y\C\equiv e\C$,
we know by~\sref{parsec-50.40} that
$y=\left<e,x\right>e$,
and so $\|y\|^2 y = \left<y,x\right>y$.
Whence~$\|y\|^2 = \left<y,x\right>$.
Note that the claim implies that $\left<x-y,y\right>=0$:
\begin{equation*}
0\ =\ \|y\|^2-\left<x,y\right> \ =\ \left<y,y\right>-\left<x,y\right>
\ =\ \left<y,x-y\right>.
\end{equation*}
Let~$c\in C$ be given.
Note that when~$y_1$ is a projection of
$x$ on~$C$, then~$y_1+c$ is a projection
of~$x+c$ on~$C$, because
$\|(y_1+c)-(x+c)\|=\|y_1-x\|\leq \|(y'-c)-x\|\equiv \|y'-(x+c)\|$
for all~$y'\in C$.
Let~$y_1$ and~$y_2$ be projections of~$x$ on~$C$;
we will show that~$y_1=y_2$.
By the previous paragraph,
$0\equiv y_1-y_1$ and~$y_2-y_1$ are projections of~$x-y_1$ on~$C$,
and thus on~$y_1\C$.
But since there's at most one projection of~$x-y_1$ on~$y_1\C$
by~\sref{parsec-50.40} (even when~$y=0$),
we get~$0=y_2-y_1$, and so~$y_1=y_2$.
Let~$y'\in C$ be given.
Recall that~$y$ is a (and thus the unique) projection of~$x$
on~$C$. It remains to be shown that
$\left<y',x-y\right>=0$.
Since~$y' \equiv y+y'-y$ is a projection
of $x':=x+y'-y$ on~$C$,
we get
\begin{equation*}
0\ =\ \left<y',x'-y'\right>\ \equiv \
\left<y',(x+y'-y)-y'\right>\ \equiv\ \left<y',x-y\right>.
\end{equation*}
\end{solution}
\begin{solution}{parsec-50.110}%
Let~$T\colon \scrH\to\scrK$
be a bounded linear map between Hilbert spaces
$\scrH$ and~$\scrK$.
We'll show that~$T$ is adjointable.
Let~$y \in \scrK$ be given.
Then~$\left<y,T(\,\cdot\,)\right>\colon \scrH\to\C$
is a linear map,
bounded by $\|y\|\|T\|$,
because $\left|\left<y,Tx\right>\right|\leq
\|y\|\, \|Tx\|\leq \|y\|\,\|T\|\,\|x\|$
for all~$x\in \scrH$.
Thus $\left<y,T(\,\cdot\,)\right>\equiv \left<Sy,\,\cdot\,\right>$
for some unique $Sy\in \scrH$ by~\sref{parsec-50.90}.
The resulting map~$S\colon \scrK\to\scrH$
is linear, because
\begin{alignat*}{3}
\left<S(y_1+\lambda y_2),\,\cdot\,\right>
&=\ \left< y_1+\lambda y_2, T(\,\cdot\,)\right>
\ =\ \left<y_1,T(\,\cdot\,)\right> +
\bar\lambda\left<y_2,T(\,\cdot\,)\right>\\
\ &=\ \left<Sy_1,\,\cdot\,\right> +
\bar\lambda\left<Sy_2,\,\cdot\,\right>
\ =\ \left<(Sy_1+\lambda Sy_2),\,\cdot\,\right>,
\end{alignat*}
for all $y_1,y_2\in\scrK$ and~$\lambda\in\C$.
Since $\left<Sy,x\right>=\left<y,Tx\right>$
for all~$x\in\scrH$ and~$y\in\scrK$,
$S$ is adjoint to~$T$ (and~$T$ is adjoint to~$S$).
Finally, note that~$S$ is bounded by~$\|T\|$,
because
$\|Sy\|^2 = \left<Sy,Sy\right>
= \left<y,TSy\right>
\leq \|y\|\,\|T\|\,\|Sy\|$,
and so~$\|Sy\|\leq \|y\|\|T\|$,
for all~$y\in\scrK$.
\end{solution}
\begin{solution}{parsec-70.30}
Let~$a$ be an element of a $C^*$-algebra~$\scrA$.
\begin{enumerate}
\item[1.]
$\Real{a}$ is self-adjoint, because
$(\Real{a})^*
= \frac{1}{2}(a^{*}+a^{**}) = \frac{1}{2}(a^*+a) = \Real{a}$.
To see that~$\Imag{a}$ is self-adjoint, recall
that $\bar{i}=-i$,
so
$(\Imag{a})^*
= -\frac{1}{2i}(a^*-a)
= \Imag{a}$.
The identity $a=\Real{a}+i\Imag{a}$
follows from
$2(\Real{a}+i\Imag{a})
= a+a^* \,+\, (a-a^*)
= 2a$.
\item[2.]
Since $a^*=b^*+\bar{i}c^* =b-ic$,
we have $2\Real{a}=a+a^* = b+ic\,+\,b-ic = 2b$,
and $2i\Imag{a} = a-a^* = b+ic \,-\, (b-ic) = 2ic$,
so~$\Real{a}=b$, and~$\Imag{a}=c$.
\item[3.]
Since $a^* = (\Real{a}+i\Imag{a})^*
= \Real{a} - i\Imag{a}$ by point~1,
we get $\Real{(a^*)}=\Real{a}$
and $\Imag{(a^*)} = -\Imag{a}$ by point~2.
\item[4.]
Indeed,
$a$ is self-adjoint iff~$a=a^*$
iff $a+a^*=2a$
iff $\Real{a} \equiv \frac{1}{2}(a+a^*) = a$
iff $a-a^* = 0$
iff $\Imag{a}\equiv \frac{1}{2i}(a-a^*) = 0$.
\item[5.]
$\Real{(\,\cdot\,)}$
and $\Imag{(\,\cdot\,)}$
are $\R$-linear,
because~$(\,\cdot\,)^*$
is $\R$-linear.
\item[6.]
Apply point~2 to
$ia = i(\Real{a}+i\Imag{a}) = \Imag{a}-i\Real{a}$.
\item[7.]
The element
$a^*a$ is self-adjoint,
because $(a^*a)^*=a^*a^{**}=a^*a$.
Further,
$a^*a = (\Real{a}-i\Imag{a})(\Real{a}+i\Imag{a})
= \Real{a}^2 + \Imag{a}^2 + i(\Real{a}\Imag{a}-\Imag{a}\Real{a})$.
\item[8.]
It suffices to find self-adjoint elements~$b$ and~$c$
of some~$C^*$-algebra~$\scrA$ with~$bc\neq cb$,
because then~$a:= b+ic$ will do the job.
Given any linearly independent vectors
$x$ and~$y$
from some Hilbert space~$\scrH$
with $\left<x,y\right>\neq 0$.
define~$b:=\ketbra{x}{x}$ and $c:=\ketbra{y}{y}$.
Then~$bc = \ketbra{x}{y}\,\left<x,y\right> $
and~$cb=\ketbra{y}{x}\,\left<y,x\right>$.
So if~$bc=cb$,
then~$\left|\left<x,y\right>\right|^2x = bcx
= cbx = \left<y,x\right>\|x\|^2y$,
contradicting the linear independence of~$x$ and~$y$.
\item[9.]
Combine point~3 and point~7.
\item[10.]
Indeed, $bc$ is self-adjoint
iff~$bc=(bc)^*\equiv c^*b^*\equiv cb$.
So~$x$ and~$y$ are non-orthogonal linearly independent vectors
of a Hilbert space~$\scrH$ as in point~8,
then~$\ketbra{x}{x}\ketbra{y}{y}\equiv \left<x,y\right>\,\ketbra{x}{y}$
is not self-adjoint.
\item[11.]
Surely, if~$a=0$,
then~$a^*=0$, and so~$\|a\|=0=\|a^*\|$.
So we may assume that~$a\neq 0$
(and so~$a^*\neq 0$).
Then, since~$\|a\|^2=\|a^*a\|\leq \|a^*\|\,\|a\|$,
we have $\|a\|\leq \|a^*\|$.
Since similarly $\|a^*\|\leq \|a\|$,
we get~$\|a\|=\|a^*\|$.
\item[12.]
Note that
$\|\Real{a}\|\leq
\frac{1}{2}\|a\|+\frac{1}{2}\|a^*\|
= \|a\|$
and $\|\Imag{a}\|\leq
\frac{1}{2}\|a\| + \frac{1}{2}\|a^*\|
= \|a\|$
by the triangle inequality and $\|a^*\|=\|a\|$.
\item[13.]
When~$a$ is self-adjoint,
$\|a^2\| = \|a^*a\| = \|a\|^2$.
Let~$x$ and~$y$ be non-zero orthogonal vectors
from some Hilbert space~$\scrH$.
Then~$\ketbra{x}{y}^2 = 0$, and so~$\|\ketbra{x}{y}^2\|=0$,
while $\|\ketbra{x}{y}\|^2 = \|x\|^2\|y\|^2$
(see~\sref{parsec-40.190}) is non-zero.
\end{enumerate}
\end{solution}
\begin{solution}{parsec-80.20}
For the sake of clarity,
we'll denote the zero and unit of a $C^*$-algebra~$\scrA$
in this exercise
by~$0_\scrA$ and~$1_\scrA$, respectively.
\begin{enumerate}
\item
Since~$0_\scrA=1_\scrA$ when~$\scrA=\{0_\scrA\}$,
then also $0_\C=\|0_\scrA\|=\|1_\scrA\|$.
\item
We claim that~$\|1_\scrA\|\leq 1_\C$.
Indeed, since $\|1_\scrA\|=\|1_\scrA^*1_\scrA\|=\|1_\scrA\|^2$,
we either have $\|1_\scrA\|=1_\C$
or $\|1_\scrA\|=0_\C$.
In either case, $\|1_\scrA\|\leq 1_\C$.
Thus $\|\lambda 1_\scrA\| = \left|\lambda\right|\|1_\scrA\|\leq
\left|\lambda\right|$, in~$\C$.
\item
Since $\|\lambda 1_\scrA\|1_\scrA
= \left|\lambda\right| \,\|1_\scrA\|\, 1_\scrA$,
it suffices to show that $\|1_\scrA\|\, 1_\scrA = 1_\scrA$,
that is, that $\left| 1_\C-\|1_\scrA\|\right|\,\|1_\scrA\| =0$.
But as we already saw that~$\|1_\scrA\|$
is equal to either~$1_\C$ or~$0_\C$,
this is indeed the case.
\end{enumerate}
\end{solution}
\begin{solution}{parsec-90.20}
Showing that the first three points are equivalent is not too difficult.
$\text{1.}\implies\text{2.}$:
If~$f(x)\geq 0$ for all~$x\in X$,
then~$g\colon X\to\C$ given by~$g(x)=\sqrt{f(x)}$
for all~$x\in X$ is continuous,
and~$g^2=f$.
$\text{2.}\implies\text{3.}$:
is obvious.
$\text{3.}\implies\text{1.}$:
If~$f\equiv g^*g$ for some~$g\in C(X)$,
then~$f(x)=\smash{\overline{g(x)}}g(x)=\left|g(x)\right|^2\geq 0$
for all~$x\in X$.
Of course,
$\text{5.}\implies \text{4.}$ is obvious.
For the remainder,
note that given~$t\in \R$ we have
$\|f-t\|\equiv \sup\{\left|f(x)-t\right|\colon x\in X\}\leq t$
iff $\left|f(x)-t\right|\leq t$ for all~$x\in X$
iff $-t\leq f(x)-t \leq t $ for all~$x\in X$
iff $0\leq f(x)\leq 2t$ for all~$x\in X$
iff $0\leq f\leq 2t$
iff $0\leq f$ and~$\frac{1}{2}\|f\|\leq t$.
Hence $\text{4.}\implies\text{1.}\implies\text{5.}$.
\end{solution}
\begin{solution}{parsec-90.30}
Since only~$0$ is not invertible in~$\C$,
we see that an element $f$ of $C(X)$
is invertible (with inverse given by~$f^{-1}(x)=f(x)^{-1}$
for all~$x\in X$) precisely when~$f(x)\neq 0$ for all~$x\in X$,
that is, when $0\notin f(X)$.
In particular,
$f-\lambda $ is \emph{not} invertible
iff $0\in (f-\lambda)(X)$
iff $f(x)=\lambda$ for some~$x\in X$
iff $\lambda \in f(X)$.
\end{solution}
\begin{solution}{parsec-90.90}
Given an element~$a$ of a $C^*$-algebra,
we have that
$a$ is an effect iff $0\leq a\leq 1$
iff both $a$ and~$a^\perp \equiv 1-a$
are positive (using the definition of~$\leq$ here)
iff both $a^{\perp\perp}\equiv a$ and~$a^\perp$ are positive
iff $0\leq a^\perp\leq 1$
iff $a^\perp$ is an effect.
\end{solution}
\begin{solution}{parsec-90.100}
\begin{enumerate}
\item[1.]
$0$ is positive, because~$0^*=0$ and~$\|0-0\|\leq 0$.
That~$a+b\in\scrA_+$ when~$a,b\in\scrA_+$
was proven in~\sref{parsec-90.70}.
To show that~$\lambda a$ is positive
for~$a\in\scrA_+$ and~$\lambda\in[0,\infty)$,
pick~$t\in \R$ with~$\|a-t\|\leq t $.
Then~$\lambda a$ is self-adjoint,
and~$\|\lambda a -\lambda t\| = \lambda \|a-t\|\leq \lambda t$,
so~$\lambda a$ is positive.
Since~$0$ is positive,
we have $a\leq a$ for all~$a\in\scrA$.
Further, when~$a\leq b\leq c$ for some~$a,b,c\in\scrA$,
then~$b-a$ and~$c-b$ are positive,
so~$c-a\equiv (c-b)+(b-a)$
is positive,
that is~$a\leq c$.
Hence~$\leq$ is a preorder, on~$\scrA$.
\item[2.]
The unit, $1$, is self-adjoint since
$1^*=1^*1 = (1^*1)^* = (1^*)^*=1$,
and positive, because $\|1-1\|\leq 1$.