forked from westerbaan/theses
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathproc.tex
6808 lines (6670 loc) · 210 KB
/
proc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Assorted Structure in~$\W{cpsu}$}
\begin{parsec}{920}%
\begin{point}{10}%
In the previous two chapters
we have travelled through
charted territory
when developing the theory of $C^*$-algebras
and von Neumann algebras
adding some new landmarks and shortcuts
of our own along the way.
In this chapter
we properly break new ground
by revealing
two entirely new features
of the category~$\W{cpsu}$
of von Neumann algebras
and the normal completely positive sub-unital
linear maps between them,
namely,
\begin{enumerate}
\item
that the binary operation~$\ast$
on the effects of a von Neumann algebra~$\scrA$
given by~$p\ast q = \sqrt{p}q\sqrt{p}$
(representing measurement of~$p$)
can be axiomatised,
and
\item
that the category~$\W{cpsu}$
has all the bits and pieces
needed to be a model of Selinger and Valiron's quantum lambda calculus.
\end{enumerate}
We'll deal with the first matter directly after this introduction
in Section~\ref{S:measurement}.
The second matter is treated in Section~\ref{S:model},
but only after
we have given the tensor product of von Neumann
algebras a complete overhaul
in Section~\ref{S:tensor}.
Finally, as an offshoot of our model
of the quantum lambda calculus
we'll study all
von Neumann algebras
that admit a `duplicator'
in Section~\ref{S:duplicable}
---
surprisingly, they're
all of the form $\ell^\infty(X)$.
\end{point}
\end{parsec}
\section{Measurement}
\label{S:measurement}
\begin{parsec}{930}%
\begin{point}{10}%
The maps on a von Neumann algebra~$\scrA$
of the form
$a\mapsto \sqrt{p}a\sqrt{p}\colon\,\scrA\to\scrA$,
where~$p$ is an effect of~$\scrA$,
represent measurement of~$p$,
and are called \emph{assert maps} in~\cite{newdirections}.
The importance of these maps
to any logical description of
quantum computation is not easily overstated.
On the effects of~$\scrA$
these maps are also studied
in the guise
of the binary operation
$p\ast q=\sqrt{p} q \sqrt{p}$
called the \emph{sequential product}
(see e.g.~\cite{gudder2002sequential}).
We'll axiomatise this operation
in this section
in terms of the properties
of the underlying assert maps.
Our first observation
to this end
is that any assert map factors as
\begin{equation*}
\xymatrix@C=10em{
\scrA
\ar[r]^-{\pi\colon a\mapsto \ceil{p}a\ceil{p}}
&
\ceil{p}\!\scrA\!\ceil{p}
\ar[r]^-{c\colon a\mapsto \sqrt{p}a\sqrt{p}}
&
\scrA
},
\end{equation*}
where both~$\pi$ and~$c$ obey a universal property:
$c$ is a \emph{filter} of~$p$, see~\sref{filter},
and~$\pi$ is a \emph{corner} of~$\ceil{p}$, see~\sref{corner}.
Such maps
that are the composition of a filter and a corner
will be called \emph{pure}, see~\sref{pure},
Since not only assert maps turn out to be pure, but also maps of the form
$b^*(\,\cdot\,)b\colon \scrA\to\scrA$ for an arbitrary element~$b$
of~$\scrA$,
we need another property of assert maps, namely
that
\begin{equation*}
\sqrt{p}\,e_1\,\sqrt{p}\ \leq\ e_2^\perp
\qquad\iff\qquad
\sqrt{p}\,e_2 \,\sqrt{p}\ \leq\ e_1^\perp
\end{equation*}
for all projections~$e_1$ and~$e_2$ of~$\scrA$---which we'll
describe by saying that
\begin{equation*} \sqrt{p}(\,\cdot\,)\sqrt{p}\colon \scrA\to\scrA
\end{equation*}
is \emph{$\diamond$-self-adjoint}.
Judging only by the name
it may not surprise you that the map $b(\,\cdot\,)b\colon \scrA\to\scrA$
where~$b\in \scrA$ is self-adjoint (but not necessarily positive)
turns out to be $\diamond$-self-adjoint too,
so that as a final touch we introduce the notion
of \emph{$\diamond$-positive} maps $f\colon \scrA\to\scrA$
that are simply maps of the form~$f\equiv gg$ for some $\diamond$-self-adjoint~$g$.
The main technical result, then, of this section
is that any $\diamond$-positive map $f\colon\scrA\to\scrA$
is of the form~$f=\sqrt{p}(\,\cdot\,)\sqrt{p}$
where~$p=f(1)$;
and, accordingly, our axioms
(in~\sref{uniqueness-sequential-product})
that uniquely
determine the sequential product~$\ast$
on the effects of a von Neumann algebra~$\scrA$ are:
for every effect~$p$ of~$\scrA$,
\begin{enumerate}
\item
$p\ast 1=p$,
\item
$p\ast q = f(q)$
for all~$q\in [0,1]_\scrA$
for some pure map~$f\colon \scrA\to\scrA$,
\item
$p=q\ast q$ for some $q$ from~$[0,1]_\scrA$,
\item
$p \ast (p \ast q) = (p\ast p)\ast q$
for all~$q\in[0,1]_\scrA$,
\item
$p \ast e_1 \leq e_2^\perp\iff
p \ast e_2 \leq e_1^\perp$
for all projections $e_1,e_2$ of~$\scrA$.
\end{enumerate}%
While I would certainly not like
to undersell the results mentioned above,
I suspect that the notion of purity exposed along the way
might turn out to be of far greater significance
for the following reason.
Our notion of purity can be described in
wildly different terms:
a map~$f\colon \scrA\to\scrB$ is pure when given its
\emph{Paschke dilation}
$\xymatrix{\scrA
\ar[r]|-\varrho
&
\scrP\ar[r]|-c
&
\scrB}$
the map $\varrho$ is surjective
(see~\sref{paschke-pure} and~\cite{wwpaschke}).
Because of my faith in our notion of purity I've allowed myself
to address some theoretical questions concerning it
here that are not required for the main results of this thesis,
but suppose a general interest in purity:
I'll show that every pure map~$f\colon\scrA\to\scrB$
is extreme among the ncp-maps~$g\colon \scrA\to\scrB$ with~$f(1)=g(1)$,
and, in fact, enjoys the possibly stronger property
of being~\emph{rigid} (see~\sref{rigid} and~\sref{pure-is-rigid}).
\end{point}
\end{parsec}
\subsection{Corner and Filter}
\begin{parsec}{940}%
\begin{point}{10}{Definition}%
Given a projection~$e$ of a von Neumann algebra~$\scrA$,
the \Define{corner}%
\index{corner (von Neumann algebra)}
of~$e$
is the subset~$e\scrA e$%
\index{*eAe@$e\scrA e$, corner}
of~$\scrA$
(consisting of the elements of~$\scrA$
of the form~$eae$ with~$a\in\scrA$).
In this context,
the obvious map~$e\scrA e\to\scrA$
is called the \Define{inclusion}%
\index{inclusion!of a corner}
and the map $a\mapsto eae,\ \scrA\to e\scrA e$
is called the \Define{projection}.%
\index{projection!onto a corner}
\end{point}
\begin{point}{20}[corner-vna-basic]{Exercise}%
Let~$e$ be a projection from a von Neumann algebra~$\scrA$.
\begin{enumerate}
\item
Show that~$a\in\scrA$
is an element of~$e\scrA e$ iff~$eae=a$
iff $\ceilr{a}\cup\ceill{a} \leq e$.
\item
Show that the corner~$e\scrA e$
is closed under addition, (scalar) multiplication,
and involution.
\item
Show that~$e$ is a unit for~$e\scrA e$,
that is, $ea=ae=a$ for all~$a\in e\scrA e$.
\item
Show that~$e\scrA e$ is norm and ultraweakly closed.\\
(Hint: use the fact that $e(\,\cdot\,)e\colon \scrA\to\scrA$
is normal and bounded.)
\item
Show that~$e\scrA e$ ---
endowed with the addition, (scalar) multiplication,
involution and norm from~$\scrA$,
and with~$e$ as its unit --- is a $C^*$-algebra.
\item
Show that the supremum of a bounded directed
set~$D$ of self-adjoint elements of~$e\scrA e$
computed in~$\scrA$
is itself in~$e\scrA e$,
and, in fact, the supremum of~$D$ in~$e\scrA e$.
\item
Show that the inclusion $e\scrA e\to\scrA$
is an ncpsu-map.
\item
Deduce from this that the restriction of an np-map
$\omega\colon \scrA\to\C$ to
a map $e\scrA e\to\C$
is an np-map.
Conclude that~$e\scrA e$ is a von Neumann algebra.
\item
Show that the projection $a\mapsto eae,\ \scrA\to e\scrA e$
is an ncpu-map.
\item
Show that every np-map $\omega\colon e\scrA e\to\C$
is the restriction
of the np-map $\omega(e(\,\cdot\,)e)\colon \scrA\to\C$.
Deduce from this that the ultraweak topology of~$e\scrA e$
coincides (on $e\scrA e$) with the ultraweak topology on~$\scrA$.
Show that the ultrastrong topologies on~$e\scrA e$ and~$\scrA$
coincide in a similar fashion.
\end{enumerate}
\spacingfix
\end{point}%
\begin{point}{30}[ad-ncp]{Exercise}%
Let~$a$ be an element of a von Neumann algebra~$\scrA$,
and let~$p$ and~$q$ be projections
of~$\scrA$ with $a^*pa\leq q$.
\begin{enumerate}
\item
Show that $a^*ba\in q\scrA q$
for every~$b\in p\scrA p$.
\item
Show that~$a^*(\,\cdot\,)a$
gives an ncp-map $p\scrA p\to q\scrA q$.
\end{enumerate}
\spacingfix%
\end{point}%
\end{parsec}%
\begin{parsec}{950}%
\begin{point}{10}[corner]{Definition}%
Let~$p$ be an effect of a von Neumann algebra~$\scrA$.
A \Define{corner}%
\index{corner (map)}
of~$p$ is an
ncp-map $\pi\colon \scrA\to\scrC$
to a von Neumann algebra~$\scrC$
with~$\pi(p^\perp)=0$,
which is initial among such maps
in the sense
that every ncp-map $f\colon \scrA\to\scrB$
with~$f(p^\perp)=0$
factors as $f=g\circ\pi$
for some unique ncp-map $g\colon \scrC\to\scrB$.
While most corners
that we'll deal with are unital,
there are also corners which are not unital
(because there are non-unital
ncp-isomorphisms).
When we write ``corner'' we shall
always mean a ``unital corner''%
\index{corner (map)!unital}
unless explicitly stated otherwise.
\end{point}
\begin{point}{20}[prop-corner]{Proposition}%
Given an effect~$p$ of a von Neumann algebra~$\scrA$,
and a partial isometry~$u$ of~$\scrA$
with $\floor{p}=uu^*$,
the map $\pi\colon \scrA\to u^*u \scrA u^*u$
given by~$\pi(a)=u^*au$ is a corner of~$p$.
\begin{point}{30}{Proof}%
By~\sref{ad-ncp}, $\pi$ is an ncp-map.
To see that~$\pi(p^\perp)\equiv u^*p^\perp u =0$,
note that since~$u^*u=u^*\,u u^*\,u$,
we have $0=u^*(uu^*)^\perp u =u^*\smash{\floor{p}}^\perp u
= u^*\ceil{\smash{p^\perp}} u$,
and so
$0 = \ceil{u^* \ceil{\smash{p^\perp}} u }
=\ceil{u^* p^\perp u}$
by~\sref{ceil-fundamental},
giving~$u^*p^\perp u=0$
by~\sref{ceil-basic}.
Let~$\scrB$ be a von Neumann algebra,
and let~$f\colon \scrA\to\scrB$ be an ncp-map
with $f(p^\perp)=0$.
To show that~$\pi$ is a corner,
we must show that there is a unique ncp-map
$g\colon u^*u \scrA u^*u\to\scrB$
with $f=g\circ \pi$.
Uniqueness follows
from surjectivity of~$\pi$.
Concerning existence,
define~$g:= f\circ \zeta$,
where $\zeta\colon u^*u\scrA u^*u\to \scrA$
is the ncp-map given by~$\zeta(a)=uau^*$
for~$a\in\scrA$ (see~\sref{ad-ncp}),
so that it is immediately clear that~$g$ is an ncp-map.
It remains to be shown~$f=g\circ \pi$,
that is,
$f(a)=f(uu^*\,a\,uu^*)$ for all~$a\in\scrA$.
This follows from~\sref{cp-comprehension}
because~$f(\smash{(uu^*)^\perp})=0$,
since~$\ceil{\smash{f(\,\smash{(uu^*)^\perp}\,)}}
=\ceil{\smash{f(\smash{\floor{p}}^\perp)}}
=\ceil{\smash{f(\ceil{\smash{p^\perp}})}}
= \ceil{\smash{f(p^\perp)}}=\ceil{0}=0$.\qed
\end{point}
\end{point}
\end{parsec}
\begin{parsec}{960}%
\begin{point}{10}[filter]{Definition}%
A \Define{filter}%
\index{filter}
is an ncp-map $c\colon \scrC\to\scrA$
between von Neumann algebras
such that every ncp-map $f\colon \scrB\to\scrA$
with~$f(1)\leq c(1)$
factors as $f=c\circ g$
for some unique ncp-map $g \colon \scrB\to\scrC$.
We'll say that~$c$ is a \Define{filter for}~$c(1)$.
\index{filter!for~$p$}
\begin{point}{11}{Remark}%
In the abstract setting of effectus theory,
it makes sense to call these filters
``quotients'', as we do in~\cite{cho2015quotient};
but since in the concrete setting of von Neumann algebras
``quotient'' has a pre-existing and unrelated meaning,
we chose to use the word ``filter'' instead (as in ``polarising filter''),
an idea borrowed from~\cite{wilce2016royal}.
\end{point}
\end{point}
\begin{point}{20}%
To show that there is a filter
for every positive element of a von Neumann algebra
we need the following result
concerning ultraweak limits of ncp-maps.
\end{point}
\begin{point}{30}[ncp-uwlim]{Lemma}%
Given von Neumann algebras~$\scrA$
and~$\scrB$
the pointwise ultraweak limit
$f\colon \scrA\to\scrB$
of a net of positive linear maps $f_\alpha\colon \scrA\to\scrB$
is positive, and,
\begin{enumerate}
\item
$f$ is completely positive provided
that the $f_\alpha$ are completely positive, and
\item
$f$ is normal provided that the $f_\alpha$ are normal
and the ultraweak convergence of the~$f_\alpha$ to~$f$
is uniform on~$[0,1]_\scrA$.
\end{enumerate}
\spacingfix%
\begin{point}{40}{Proof}%
Since given~$a\in \scrA$ the element~$f(a)$
is the ultraweak limit of the positive elements~$f_\alpha(a)$,
and therefore positive (by~\sref{vn-positive-basic}),
we see that~$f$ is positive.
Suppose that each~$f_\alpha$ is completely positive.
To show that~$f$ is completely positive,
we must prove, given~$a_1,\dotsc,a_n\in\scrA$
and~$b_1,\dotsc,b_n\in\scrB$,
that
the element $\sum_{i,j} b_i^* f(a_i^*a_j)b_j$
of~$\scrB$
is positive.
And indeed it is,
being the ultraweak limit of
the positive elements $\sum_{i,j} b_i^* f_\alpha (a_i^* a_j)b_j$,
because $f_\alpha(a_i^* a_j)$
converges ultraweakly to~$f(a_i^* a_j)$,
and~$b_i^*(\,\cdot\,)b_j\colon \scrB\to\scrB$
is ultraweakly continuous
(\sref{mult-uws-cont})
for any~$i$ and~$j$.
If the~$f_\alpha$
are normal,
and converge uniformly on~$[0,1]_\scrA$ ultraweakly
to~$f$,
then~$f$ is ultraweakly continuous
on~$[0,1]_\scrA$
(because the uniform limit of continuous functions is continuous),
and thus normal (by~\sref{p-uwcont}).\qed
\end{point}
\end{point}
\begin{point}{50}[canonical-filter]{Proposition}%
Given an element~$d$ of a von Neumann algebra~$\scrA$,
the map $c\colon \ceilr{d}\!\scrA\!\ceilr{d}\to\scrA$
given by~$c(a)=d^*ad$
is a filter.
\begin{point}{60}{Proof}%
Note that~$c$ is an ncp-map by~\sref{ad-ncp}.
Let~$\scrB$ be a von Neumann algebra,
and let~$f\colon \scrB\to\scrA$ be an ncp-map
with $f(1)\leq c(1)$.
To show that~$c$ is a filter,
we must show that there is a unique ncp-map
$g\colon \scrB\to
\ceilr{d}\!\scrA\!\ceilr{d}$
with~$f=c\circ g$.
Uniqueness of~$g$ follows from the observation
that~$c$ is injective by~\sref{mult-cancellation}.
To establish the existence of such~$g$,
note that~$f(b)$ is an element of~$d^*\scrA d$,
when~$b$ is positive
by~\sref{sequential-douglas}
because~$0\leq f(b)\leq \|b\|f(1)\leq \|b\| c(1)=\|b\|d^*d$,
and thus for arbitrary~$b\in\scrB$ too
(being a linear combination
of positive elements).
We can thus define $g\colon \scrB\to \ceilr{d}\!\scrA\!\ceilr{d}$
by~$g(b)=d^*\backslash f(b)/d$
for all~$b\in\scrB$.
It is clear that~$g$ is linear and positive,
and~$c\circ g=f$.
To see that~$g$ is normal,
note that
$d^*\backslash\,\cdot\,/d\colon
d^*(\scrA)_1 d\to\scrA$
is ultrastrongly continuous by~\sref{div-usc},
as is~$f$ by~\sref{cp-uscont}
(also) as map from~$(\scrB)_1$ to~$d^*(\scrA)_1 d$,
so that~$g$ is ultrastrongly continuous on~$(\scrB)_1$,
and therefore normal by~\sref{p-uwcont}.
Finally, $g$ is completely positive
by~\sref{ncp-uwlim},
because it is by~\sref{div-approx}
the uniform ultrastrong limit
of the by~\sref{ad-ncp} completely positive maps
$(\sum_{n=1}^Nt_n)^* \,f(\,\cdot\,)\,(\sum_{n=1}^N t_n)$,
where~$t_1,t_2,\dotsc$
is an approximate pseudoinverse of~$d$.\qed
\end{point}
\end{point}
\end{parsec}
\begin{parsec}{970}
\begin{point}{10}
Before exploring their more technical aspects,
we'll explain how
corners and filters can be made to appear at opposite ends
of a chain of adjunctions:
\begin{equation*}
\xymatrix@R=5em{
\Cat{Eff}\ar[d]
\ar@/_3ex/@{{}{ }{}}[d]|\dashv
\ar@/^3ex/@{{}{ }{}}[d]|\dashv
\ar@/_11.5ex/@{{}{ }{}}[d]|\dashv
\ar@/^11.5ex/@{{}{ }{}}[d]|\dashv
\ar@/_15ex/[d]_{\text{Filter}}
\ar@/^15ex/[d]^{\text{Corner}}
\\
\op{(\W{cpsu})}\ar@/^8ex/[u]_{\mathbf{0}}\ar@/_8ex/[u]^{\mathbf{1}}
}
\end{equation*}
The category $\Define{\Cat{Eff}}$%
\index{Eff@$\Cat{Eff}$}%
\index{quotient--comprehension chain}
has as objects pairs $(\scrA, p)$,
where~$\scrA$ is a von Neumann algebra, and~$p\in[0,1]_\scrA$
is an effect from~$\scrA$.
A morphism $(\scrA,p)\longrightarrow (\scrB,q)$
in~$\Cat{Eff}$
is an ncpsu-map $f\colon \scrB\to \scrA$ with $p\leq f(q)+f(1)^\perp$
--- that is,
\begin{equation*}
\omega(p)\ \leq\ \omega(f(q))\,+\,\omega(f(1))^\perp
\qquad\text{for every normal state } \omega\colon \scrA\to \C.
\end{equation*}
The functor $\Cat{Eff}\longrightarrow \op{(\W{cpsu})}$
in the middle of the diagram above
maps a morphism $f\colon (\scrA,p)\to(\scrB,q)$
to the underlying map $f\colon \scrB\to\scrA$.
The functors~$\mathbf{0}$ and~$\mathbf{1}$
on its sides map a von Neumann algebra~$\scrA$ to
$(\scrA,0)$ and~$(\scrA,1)$, respectively,
and send an ncpsu-map $f\colon \scrA\to\scrB$ to itself;
this is possible since
\begin{equation*}
0\,\leq\, f(0) + f(1)^\perp
\qquad\text{and}\qquad
1\,\leq\, f(1)+f(1)^\perp.
\end{equation*}
That~$\mathbf{1}$
is right adjoint to the functor $\Cat{Eff}\longrightarrow \op{(\W{cpsu})}$
follows from the observation that
an ncpsu-map $f\colon \scrB\to\scrA$
is always a morphism $(\scrA,p)\to(\scrB,1)$,
whatever $p\in[0,1]_\scrA$ may be,
because $p \leq f(1)+f(1)^\perp$.
For a similar reason $\mathbf{0}$ is left adjoint to
$\Cat{Eff}\longrightarrow \op{(\W{cpsu})}$.
On the other hand,
a morphism $(\scrA,1)\to(\scrB,q)$ where $q\in[0,1]_\scrB$
is not just any ncpsu-map $f\colon \scrB\to\scrA$,
but one
with $1\leq f(q)+f(1)^\perp$,
that is, $f(q^\perp)=0$.
It's no surprise then that
a corner $\pi\colon \scrB\to \scrC$ for~$q\in[0,1]_\scrB$
considered as morphism $(\scrC,1)\to(\scrB,q)$
is a universal arrow from~$\mathbf{1}$ to~$(\scrB,q)$.
On the other side there's a twist:
a morphism $(\scrA,p)\to(\scrB,0)$ where~$p\in[0,1]_\scrA$
is an ncpsu-map $f\colon \scrA\to\scrB$
with $p\leq f(0)+f(1)^\perp$,
that is, $f(1)\leq p^\perp$.
It follows that any filter $c\colon \scrC\to \scrA$ for~$p^\perp$,
when considered as morphism $(\scrA,p)\to (\scrC,0)$,
is a universal arrow from~$(\scrA,p)$ to~$\mathbf{0}$.
This chain of adjunctions not only exposes
a hidden symmetry between filters and corners,
but such chains appear
in many other categories as well, see~\cite{cho2015quotient}.
\end{point}
\end{parsec}
\begin{parsec}{980}%
\begin{point}{10}[dfn-standard-corner-and-filter]{Definition}%
Let~$\scrA$ be a von Neumann algebra.
\begin{enumerate}
\item
Given a positive element~$p$
of~$\scrA$
we denote
by $\Define{c_p}\colon \ceil{p}\!\scrA\!\ceil{p}\to\scrA$%
\index{cp@$c_p$, standard filter for~$p$}
the \Define{standard filter}%
\index{filter!standard}
for~$p$
given by~$c_p(a)=\sqrt{p}a\sqrt{p}$
for all~$a\in\ceil{p}\!\scrA\!\ceil{p}$.
\item
Given an effect~$p$ of~$\scrA$
we denote
by $\Define{\pi_p}\colon \scrA\to\floor{p}\!\scrA\!\floor{p}$%
\index{pip@$\pi_p$, standard corner of~$p$}
the \Define{standard corner}%
\index{corner (map)!standard}
of~$p$
given by~$\pi_p(a)=\floor{p}\!a\!\floor{p}$.
\end{enumerate}
\spacingfix%
\end{point}%
\begin{point}{20}[filter-basic]{Exercise}%
Let~$c\colon \scrC\to\scrA$ be a filter,
where~$\scrC$ and~$\scrA$ are von Neumann algebras.
\begin{enumerate}
\item
Show that, writing~$p:=c(1)$,
there is a unique
ncp-map $\alpha \colon \scrC\to \ceil{p}\!\scrA\!\ceil{p}$
with $c = c_p \circ \alpha$;
and that this~$\alpha$ is a unital ncp-isomorphism.
\item
Show that~$c$ is injective
(by proving first that~$c_p$ is injective
using~\sref{mult-cancellation}).
Conclude that~$c$
is faithful (so $\ceil{f}=1$), and that~$c$ is mono in~$\W{CP}$.
\item
Show that~$c$ is bipositive
(by proving first that~$c_p$
is bipositive using~\sref{sequential-douglas}).
\end{enumerate}
\spacingfix%
\end{point}%
\begin{point}{30}[filters-composition]{Exercise}%
Show that the composition~$d\circ c$
of filters~$c\colon\scrC\to\scrD$
and~$d\colon \scrD\to\scrA$
between von Neumann algebras
is again a filter.
\end{point}
\begin{point}{40}[corner-basic]{Exercise}%
Let~$p$ be an effect of a von Neumann algebra~$\scrA$,
and let~$\pi\colon \scrA\to\scrC$ be a corner of~$p$.
\begin{enumerate}
\item
Show that there is a unique ncp-map
$\beta \colon \floor{p}\!\scrA\!\floor{p}\to\scrC$
with~$\pi = \beta\circ \pi_p$;
and that this~$\beta$ is unital and an ncp-isomorphism.
\item
Show that~$\pi$ is surjective, and that~$\pi$ is epi in~$\W{cp}$.
\end{enumerate}
\spacingfix%
\end{point}%
\begin{point}{50}[corners-floor]{Exercise}%
Show that an ncpu-map $\pi\colon \scrA\to\scrB$
between von Neumann algebras
is a corner for an effect~$p$ of~$\scrA$
iff~$\pi$ is a corner for~$\floor{p}$;
in which case~$\ceil{\pi}=\floor{p}$.
Thus a corner~$\pi$ is a corner for~$\ceil{\pi}$.
\end{point}
\begin{point}{60}[corners-composition]{Exercise}%
Show that the composition~$\tau\circ \pi$
of corners~$\pi\colon \scrA\to\scrB$
and~$\tau\colon \scrB\to\scrC$
between von Neumann algebras
is again a corner.\\
(Hint:
prove
and use the inequality
$\ceil{\tau}\leq \ceil{\smash{\pi(\ceil{\tau\circ \pi}^\perp)}}^\perp$.)
\end{point}
\begin{point}{70}[filter-corner]{Theorem}%
Given an ncp-map $f\colon\scrA\to\scrB$
between von Neumann algebras,
a projection~$e$ of~$\scrA$
with~$\ceil{f}\leq e$,
and a positive element~$p$
of~$\scrB$ with~$f(1) \leq p$,
there is a unique ncp-map
$g \colon e\scrA e
\to \ceil{p}\!\scrB\!\ceil{p}$
such that
\begin{equation*}
\xymatrix@C=4em{
\scrA
\ar[r]^-f
\ar[d]_{\pi_e}
&
\scrB
\\
e\scrA e
\ar[r]_-g
&
\ceil{p}\!\scrB\!\ceil{p}
\ar[u]_{c_p}
}
\end{equation*}
commutes,
and it is given by
$g(a)=\sqrt{p}\backslash f(a)/\!\sqrt{p}$
for all~$a\in e\scrA e$.
\begin{point}{80}{Proof}%
Uniqueness of~$g$ follows from the facts
that~$\pi_e$ is epi and~$c_p$ is mono
in~$\W{cp}$,
see~\sref{corner-basic} and~\sref{filter-basic}.
Concerning existence,
since~$\pi_e$ is a corner of~$e$,~\sref{corner},
and~$\ceil{f}\leq e$,
or in other words, $f(e^\perp)=0$,
there is a unique ncp-map $h\colon e\scrA e\to \scrB$
with $h \circ \pi_e = f$.
Note that~$h(a)=f(a)$ for all~$a$ from~$e\scrA e$.
As~$h(1)=h(\pi_e(1))=f(1)\leq p=c_p(1)$,
and~$c_p$ is a filter,~\sref{filter},
there is a unique ncp-map
$g\colon e\scrA e \to p \scrB p$
with $c_p\circ g = h$,
which is (by the proof of \sref{canonical-filter}) given by
$g(a)=\sqrt{p}\backslash h(a)/\sqrt{p}
\equiv \sqrt{p}\backslash f(a)/\sqrt{p}$
for all~$a$ from~$e\scrA e$.
Then~$c_p\circ g\circ \pi_e = h\circ \pi_e = f$.\qed
\end{point}
\end{point}
\begin{point}{90}[square-f]{Corollary}%
Given an ncp-map $f\colon \scrA\to\scrB$
between von Neumann algebras,
there is a unique ncp-map $\Define{[f]}\colon
\ceil{f}\!\scrA\!\ceil{f}
\to
\ceil{f(1)}\!\scrB\!\ceil{f(1)}$%
\index{*brackets@$[\,\cdot\,]$!$[f]$, for an ncp-map}
such that
\begin{equation*}
\xymatrix@C=4em{
\scrA
\ar[r]^-f
\ar[d]_{\pi_{\ceil{f}}}
&
\scrB
\\
\ceil{f}\!\scrA\!\ceil{f}
\ar[r]_-{[f]}
&
\ceil{f(1)}\!\scrB\!\ceil{f(1)}
\ar[u]_{c_{f(1)}}
}
\end{equation*}
commutes;
and it is given by~$[f](a)=\sqrt{f(1)}\backslash f(a)/\!\sqrt{f(1)}$
for all~$a$ from $\ceil{f}\!\scrA\!\ceil{f}$.
Moreover,
$[f]$ is unital and faithful.
\end{point}
\begin{point}{100}{Example}%
For any faithful unital ncp-map $f\colon \scrA\to \scrB$
we have~$[f]=f$.
Such a map need not be an isomorphism;
as one may take $f\colon (\lambda,\mu)\mapsto \frac{1}{2}(\lambda+\mu),
\C^2\to\C$.
\end{point}
\begin{point}{110}[ad-pure]{Example}%
In the concrete case
that $f\equiv a^*(\,\cdot\,)a \colon
s\scrA s\to t\scrA t$,
where~$a$ is an element
of a von Neumann algebra,
and $s$ and~$t$ are projections of~$\scrA$
with
$\ceilr{a}\leq s$
and~$\ceill{a}\leq t$,
the map~$[f]$
is closely related to the
polar decomposition $a\equiv [a]\sqrt{a^*a}
= \sqrt{aa^*}[a]$ of~$a$,
where $[a]=a/\sqrt{a^*a}$
(see~\sref{polar-decomposition}).
Indeed,
since $\ceil{f}=\ceilr{a}$,
$f(1)=a^*a$,
and~$[f]\equiv \sqrt{a^*a}\backslash a^*(\,\cdot\,)a/\sqrt{a^*a}
\equiv [a](\,\cdot\,)[a]^*$,
the picture becomes:
\begin{equation*}
\xymatrix@C=10em{
s\scrA s
\ar[r]^-{f\,=\,a^*\,(\,\cdot\,)\,a}
\ar[d]_{\pi_{\ceilr{a}}}
&
t\scrA t
\\
\ceilr{a}\!\scrA\!\ceilr{a}
\ar[r]_-{[f] \,=\, [a]\,(\,\cdot\,)\,[a]^*}
&
\ceill{a}\!\scrA\!\ceill{a}
\ar[u]_{c_{a^*a}}
}
\end{equation*}
Note that in this example
$[f]$ is an ncpu-isomorphism,
because~$[a]$ is a partial isometry
with initial projection~$\ceill{a}$
and final projection~$\ceilr{a}$.
Thus one can think of the diagram above
as an isomorphism theorem of sorts,
which applies only to certain ncp-maps
that'll be called \emph{pure} in a moment (see~\sref{pure-fundamental}).
\end{point}
\end{parsec}
\subsection{Isomorphism}
\begin{parsec}{990}%
\begin{point}{10}%
In case you were wondering,
the ncpu-isomorphism
we encountered in~\sref{ad-pure}
is simply an nmiu-isomorphism
(see~\sref{iso}), which follows
from the following characterisation of multiplicativity.
\end{point}
\begin{point}{20}[gardner]{Proposition}%
\index{multiplicative!ncpsu-map}
For an ncpu-map $f\colon \scrA\to\scrB$
between von Neumann algebras
the following are equivalent.
\begin{enumerate}
\item
\label{gardner-1}
$f$ is multiplicative.
\item
\label{gardner-2}
$f(a)f(b)=0$
for all $a,b\in\scrA$ with $ab=0$.
\item
\label{gardner-3}
$\ceil{f(p)}\ceil{f(q)}=0$
for all projections $p$ and~$q$ of~$\scrA$ with $pq=0$.
\item
\label{gardner-4}
$f$ maps projections to projections.
\item
\label{gardner-5}
$\ceil{f(a)}=f(\ceil{a})$
for all~$a\in\scrA_+$.
\end{enumerate}
\spacingfix%
\begin{point}{30}{Proof}%
(Based in part on the work of Gardner in~\cite{gardner}).
\begin{point}{40}{\sref{gardner-1}$\Longrightarrow$\sref{gardner-4}
and \sref{gardner-5}$\Longrightarrow$\sref{gardner-4}}
are rather obvious.
\end{point}
\begin{point}{50}{\sref{gardner-4}$\Longrightarrow$\sref{gardner-5}}%
$\ceil{f(a)}
\smash{\overset{\sref{ncp-ceil}}{=\joinrel=\joinrel=}}
\ceil{f(\ceil{a})}
=f(\ceil{a})$
since~$f(\ceil{a})$ is a projection.
\end{point}
\begin{point}{60}{\sref{gardner-4}$\Longrightarrow$\sref{gardner-3}}%
Let~$p$ and~$q$ be projections of~$\scrA$ with~$pq=0$.
Then~$p\leq q^\perp$, and so~$f(p)\leq f(q^\perp)=f(q)^\perp$,
which implies that $\ceil{f(p)}\ceil{f(q)}
=f(p)f(q)=0$ since~$f(p)$ and~$f(q)$ are projections.
\end{point}
\begin{point}{70}{\sref{gardner-3}$\Longrightarrow$\sref{gardner-2}}%
Let~$a,b\in\scrA$ with~$ab=0$ be given.
We must show that~$f(a)f(b)=0$,
and for this it suffices to show that
$\ceill{f(a)}\ceilr{f(b)}=0$,
because $f(a)f(b)=f(a)\ceill{f(a)}\ceilr{f(b)}f(b)$.
Since~$ab=0$,
we have~$\ceill{a}\ceilr{b}=0$ by~\sref{mult-cancellation},
and so~$\ceil{f(\ceill{a})}\ceil{f(\ceilr{a})}=0$.
Now,
since $\ceil{f(\ceill{a})}\leq \ceill{f(a)}$
and $\ceil{f(\ceilr{a}}\leq \ceilr{f(a)}$
by~\sref{ncp-ceill},
we get $\ceill{f(a)}\ceilr{f(b)}
= \ceill{f(a)} \ceil{f(\ceill{a})}
\ceil{f(\ceilr{a})}
\ceilr{f(a)}
=0$.
\end{point}
\begin{point}{80}{\sref{gardner-2}$\Longrightarrow$\sref{gardner-1}}%
We must show that~$f(a)f(b)=f(ab)$
for all~$a,b\in \scrA$.
Since the linear span of projections is norm-dense in~$\scrA$,
it suffices to show that $f(a)f(e)=f(ae)$
for any $a\in\scrA$ and a projection~$e$ of~$\scrA$.
Given such~$a$ and~$e$,
we on the one hand have $ae^\perp\, e=0$,
so that~$f(ae^\perp)f(e)=0$,
that is, $f(a)f(e)=f(ae)f(e)$;
and on the other hand
we have $ae\,e^\perp=0$,
so that~$f(ae)f(e^\perp)=0$,
that is, $f(ae)=f(ae)f(e)$;
so that we reach~$f(ae)=f(a)f(e)$ as sum total,
and the result that~$f$ is multiplicative.\qed
\end{point}
\end{point}
\end{point}
\begin{point}{90}[iso]{Theorem}%
An ncpsu-isomorphism $f\colon \scrA\to\scrB$
between von Neumann algebras
(so both~$f$ and~$f^{-1}$ are ncpsu-maps)
is an nmiu-isomorphism.
\begin{point}{100}{Proof}%
Since~$f^{-1}(1)\leq 1$
and so~$1=f(f^{-1}(1))\leq f(1)\leq 1$,
we see that~$f(1)=1$, so both $f$ and $f^{-1}$ are unital.
It remains to be shown that~$f$ and~$f^{-1}$ are multiplicative.
Since by~\sref{projection-order-sharp} an effect~$a$ of~$\scrA$
is a projection iff~$0$ is the infimum of~$a$ and~$a^\perp$,
and~$f$ (as ncpu-isomorphism) preserves $(\,\cdot\,)^\perp$
and order,
we see that~$f$ maps projections to projections,
and is thus multiplicative, by~\sref{gardner}.
It follows automatically that~$f^{-1}$ is multiplicative too.\qed
\end{point}
\end{point}
\begin{point}{110}{Exercise}%
Show that any filter of a projection is multiplicative.\\
(Hint: the filter is
a standard filter
up to an
ncpu-isomorphism, \sref{filter-basic},
which is an nmiu-isomorphism by~\sref{iso}.)
\end{point}
\begin{point}{120}[sharp-multiplicative]{Exercise}%
\index{multiplicative!ncp-map}
Show that for an ncp-map $f\colon \scrA\to\scrB$
between von Neumann algebras
the following are equivalent.
\begin{enumerate}
\item
$f$ is multiplicative.
\item
$f$ sends projections to projections.
\item
$\ceil{f(a)}=f(\ceil{a})$
for all~$a \in\scrA_+$.
\end{enumerate}
(Hint: factor~$f=\zeta \circ h$
where~$\zeta$ is a filter for~$f(1)$
and~$h$ is an ncp-map.)
\end{point}
\end{parsec}
\subsection{Purity}
\begin{parsec}{1000}%
\begin{point}{10}[pure]{Definition}%
Filters, corners,
and their compositions we'll call \Define{pure}.%
\index{pure map}
\end{point}
\begin{point}{20}{Exercise}%
Show that the following maps are pure.
\begin{enumerate}%
\item
An ncp-isomorphism between von Neumann algebras.
\item
The identity map~$\id\colon \scrA\to\scrA$
on a von Neumann algebra~$\scrA$.
\item
The map $a^*\,(\,\cdot\,)\,a\colon \scrA\to\scrA$
for any element~$a$ of a von Neumann algebra~$\scrA$.
\end{enumerate}
\spacingfix%
\end{point}%
\begin{point}{30}[pure-fundamental]{Proposition}%
For an ncp-map $f\colon \scrA\to\scrB$ between von Neumann algebras
the following are equivalent.
\begin{enumerate}
\item
\label{pure-fundamental-1}
$f$ is pure, i.e., $f$ is the composition
of (perhaps many) filters and corners.
\item
\label{pure-fundamental-2}
$f = c\circ \pi$ for a filter $c\colon \scrC\to\scrB$
and a corner $\pi\colon \scrA\to\scrC$.
\item
\label{pure-fundamental-3}
$[f]$ from~\sref{square-f} is an ncpu-isomorphism.
\end{enumerate}
\spacingfix%
\begin{point}{40}{Proof}%
\ref{pure-fundamental-3}$\Longrightarrow$\ref{pure-fundamental-2}
and \ref{pure-fundamental-2}$\Longrightarrow$\ref{pure-fundamental-1}
are rather obvious.
\begin{point}{50}{\ref{pure-fundamental-1}$\Longrightarrow$%
\ref{pure-fundamental-2}}%
Calling $f$ \emph{properly pure}
when~$f\equiv c\circ \pi$
for some filter~$c$ and corner~$\pi$,
we must show that every pure map is properly pure.
For this it suffices to show that the composition of properly
pure maps is again properly pure;
which,
since filters are closed under composition
(by~\sref{filters-composition}),
and corners are closed under composition
(by~\sref{corners-composition}),
boils down to proving that the composition
$\pi\circ c$ of a corner~$\pi$ and a filter~$c$
is properly pure.
Since~$\pi\equiv \alpha\circ \pi_{\ceil{\pi}}$
and~$c\equiv c_{c(1)}\circ \beta$
for ncpu-isomorphisms~$\alpha$ and~$\beta$
(see~\sref{filter-basic}
and~\sref{corner-basic})
it suffices to show that
$f:=\pi_{s} c_{p}$ is properly pure
for a positive element~$p$ and a projection~$s$
of a von Neumann algebra~$\scrA$.
Since such~$f$ is of the form $f=s\sqrt{p}(\,\cdot\,)\sqrt{p}s
\colon \ceil{p}\!\scrA\!\ceil{p}\to s\scrA s$,
we know by~\sref{ad-pure}
that~$[f]$ is an ncpu-isomorphism,
and thus that~$f\equiv c_{f(1)}\circ [f]\circ \pi_{\ceil{f}}$ is properly pure.
\end{point}
\begin{point}{60}{\ref{pure-fundamental-2}$\Longrightarrow$%
\ref{pure-fundamental-3}}%
Recall that $[f]$
is by definition the unique ncp-map