-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path17.dating_the_selection.Rmd
201 lines (144 loc) · 7.49 KB
/
17.dating_the_selection.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
title: "Dating the selection"
output: github_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE, fig.retina = 2)
library(tidyverse)
library(ggpubr)
library(cowplot)
library(rehh)
library(coda)
```
The software [startmrca](https://github.com/jhavsmith/startmrca) [@Smith2018-xt] is designed to estimate the timing of sweeps based on patterns of haplotype diversity and length that arise as a result of mutation and recombination after a sweep has occurred.
`startmrca` relies on the concept of a "focal allele" which in-theory should represent the allele that is under selection, however, in-practise it need only represent an allele on the same haplotype as the selected allele in strong linkage disequilibrium with it.
In order to estimate the timing of selection at a locus we need the following information;
- The position of the focal allele
- The identity of the focal allele at this position (0 or 1 for a biallelic SNP)
- A list of individuals with haplotypes containing the focal allele
- A list of individuals without the focal allele
#### Visualisation of haplotypes at the Haem Peroxidase Locus BLFC01000154_250000_300001
Our strongest signature of a selective sweep was identified at locus `BLFC01000154_250000_300001` in the inshore population.
```{r, results='hide'}
hap_names2pops <- function(hn){
pops <- rep("IN",length(hn))
sos <- grepl("RS[123]",hn)
nos <- grepl("^AR",hn)
ins <- (!sos & !nos)
pops[sos]="SO"
pops[nos]="NO"
pops
}
vcf_file <- "data/hpc/startmrca/regions/BLFC01000154_250000_300001_aaref.vcf"
hh <- data2haplohh(hap_file = vcf_file,
polarize_vcf = FALSE,
vcf_reader = "data.table")
position <- 281245
marker_index <- which(positions(hh)==position)
```
Firstly we plot the haplotypes themselves in a region +/- 200 markers around the focal locus. We see that the highly homozygous haplotypes at the bottom all have the derived allele whereas few of those in the top have this allele.
```{r, results='hide'}
hh_subset <- subset(hh, select.mrk = (marker_index-200):(marker_index+200))
plot(
hh_subset,
mrk = 201,
group_by_allele = TRUE,
ignore.distance = TRUE,
col = c(NA, "red"),
linecol = c("lightblue", "lightpink"),
mrk.col = "black",
cex = 0.1,
cex.lab.hap = 0.2,
hap.names = hap_names2pops(hap.names(hh))
)
```
A furcation plot shows there is one haplotype with very clear EHH. This is clearly the candidate for selection that was identified using EHH statistics and the haplotypes under selection seem to segregate effectively based on the focal allele.
```{r, results='hide'}
furcation <- calc_furcation(hh,mrk = marker_index)
hn <- hap.names(hh)
plot(furcation,hap.names = hap_names2pops(hn),cex=0.5,cex.lab=0.3)
```
The furcation plot is designed to capture relationships between haplotypes as a function of distance away from a focal point. Another way to view the sequences is to consider the relationships between their core haplotype sequences. This plot serves as a useful complement to the previous plot. Here we can not only see that the focal allele accurately identifies the selected haplotype, but also .. that it completely identifies them (ie there are no selected haplotypes that do not have the focal allele). We can see this because haplotypes with this allele form a single monophyletic clade.
```{r}
library(phytools)
library(ggtree)
hh_gg <- hh_subset@haplo %>%
as.data.frame() %>%
rownames_to_column("haplotype") %>%
pivot_longer(-haplotype,names_to = "position", values_to = "allele") %>%
extract(position,into = "pos",regex = "V([0-9]+)",convert = TRUE)
njtree <- hh_subset@haplo %>% dist.gene() %>% nj %>% midpoint.root()
tree_data <- data.frame(tiplab=hn) %>%
mutate(pop=hap_names2pops(hn), has_marker_allele = (hh_subset@haplo[,201]==1))
gnjt <- ggtree(njtree,ladderize = FALSE) %<+% tree_data +
# geom_tiplab(aes(label=pop,color=pop),align = TRUE,size=2) +
geom_tippoint(aes(color=pop),alpha=0.9,size=1) +
ggsci::scale_color_startrek() +
theme(legend.position = "none")
ggsave(gnjt,filename = "figures/hap_tree_peroxidase.png",width = 3, height = 5)
```
```{r}
gnjt + geom_facet(panel="Haplotypes",data = hh_gg %>% filter(allele==1),
geom= geom_point,mapping = aes(x=pos),color="blue",shape="|",size=1)
```
```{r}
# Identify haplotypes in inshore that are not the selected hap. This is used later for GEVA
pop="inshore"
haps_alleles <- data.frame(allele=haplo(hh)[,marker_index]) %>%
rownames_to_column("hap") %>%
extract(col = hap,into = "loc_code","([^_]+)", remove = FALSE) %>%
mutate(location = case_when(
loc_code %in% c("BR","AI") ~ "inshore",
loc_code %in% c("AR") ~ "northoffshore",
loc_code %in% c("RS1","RS2","RS3") ~ "southoffshore"
))
haps_alleles %>% filter(allele==0) %>% filter(location=="inshore")
```
## Running STARTMRCA
Our goal was to estimate the timing of selection on the gene `s0150.g24` which contained 75 sites whose allele frequencies and make them potential candidates for the beneficial allele. We chose 3 of these spanning the width of the gene and then ran startmrca on each as follows;
- We used `vcftools` to extract a phased vcf file across a 1Mb region centered on `s0150.g24`. This extraction was performed based on the vcf file where the ancestral allele has been assigned to the reference.
- We then ran startmrca using the script [03_run_tmrca.sh](data/hpc/startmrca/03_run_tmrca.sh) which itself calls [run_startmrca.R](data/hpc/startmrca/run_startmrca.R).
For each of our three loci we check convergence using the Gelman diagnostic. Then report the median estimate for the TMRCA. Dates shown are based on a mutation rate of 1.2e-8 and a recombination rate of 3.2e-8. This mutation rate is the same as used in other analyses (SMC++, fastSimCoal) and the recombination rate is based on a linkage map for *Acropora millepora* published by Dixon et al [@Dixon2015-x] which had a length of 1358 centimorgans (cM). Assuming a genome size of 430mb for *A. millepora* this corresponds to a mean recombination rate of 3.16e-8 per base per generation, which we rounded to 3.2e-8.
```{r, include=FALSE}
read_chain <- function(path){
tmp <- read_rds(path)
tmp$t.chain %>%
as.data.frame() %>%
mutate(p = path) %>%
extract(p,into=c("locus","rep"),regex="(B.*)_([0-9]+).rds") %>%
filter(V4==1) %>%
slice_tail(n=5000) %>%
slice_sample(n=1000)
}
if ( !file.exists("data/r_essentials/17_tmrca_data.rds")){
tmrca_data <- list.files("data/hpc/startmrca/results/","*.rds", full.names = TRUE) %>%
map_dfr(read_chain)
write_rds(tmrca_data,"data/r_essentials/17_tmrca_data.rds")
} else {
tmrca_data <- read_rds("data/r_essentials/17_tmrca_data.rds")
}
to_mcmc_list <- function(locus_data){
locus_data %>% dplyr::select(rep,time=V1) %>% group_by(rep) %>% group_map( ~ mcmc(.x)) %>% mcmc.list()
}
locus_groups <- split(tmrca_data,tmrca_data$locus)
locus_mcmc_lists <- locus_groups %>% lapply(to_mcmc_list)
plot(locus_mcmc_lists[[1]])
gelman.diag(locus_mcmc_lists[[1]])
gelman_pe <- function(x){
if( length(x)>1){
gd <- gelman.diag(x)
return(gd$psrf)
}else{
return(c(10,10))
}
}
gdr <- locus_mcmc_lists %>% sapply(gelman_pe) %>% t() %>% as.data.frame() %>% rownames_to_column("locus")
converged <- gdr %>% filter(V2<2) %>% pull(locus)
```
```{r}
tmrca_data %>%
filter(locus %in% converged) %>%
group_by(locus) %>%
dplyr::select(time=V1,rep) %>%
summarise(median(time)*5, nchains=length(unique(rep))) %>% knitr::kable()
```