-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathhyperparams.py
54 lines (49 loc) · 1.96 KB
/
hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
import json
import constants
import os
def main():
data = 'wordnet'
base = "/home/kotnis/data/neg_sampling/"
models = {'rescal':7.484410236920948e-05,'transE':0.0001863777691779108,'distmult':3.120071843121878e-06,'complex': 2.8198448631731174e-05}
samplers = {"random","corrupt","relational","nn","adversarial"}
#models = {'complex'}
l2 = 1.3074905074564395e-06# from hyper-param tuning
for model,l2 in models.iteritems():
for sampler in samplers:
num_negs(model,data,base,l2,sampler)
#tune_l2(model,data,base)
def num_negs(model,data,base,l2,sampler):
if not os.path.exists(base + "{}/experiment_specs/{}".format(data,sampler)):
os.mkdir(base + "{}/experiment_specs/{}".format(data,sampler))
path = base + "{}/experiment_specs/{}/".format(data,sampler)
exp_name = "{}".format(model) + "{}.json"
config = create_config(model,sampler,l2)
negs = [1,2,5,10,20,50,100]
for n in negs:
config['num_negs'] = n
json.dump(config, open(path + exp_name.format("_" + str(n)), 'w'),
sort_keys=True, separators=(',\n', ':'))
def tune_l2(model,data,base):
path = base+"{}/experiment_specs/".format(data)
exp_name = "{}".format(model) + "{}.json"
config = create_config(model,'random',0.0)
l2 = np.sort(np.random.uniform(3.5,6,size=4))
for count,e in enumerate(l2):
config['l2'] = np.power(10,-e)
json.dump(config,open(path+exp_name.format("_"+str(count+1)),'w'),
sort_keys=True,separators=(',\n', ':'))
def create_config(model_name,neg_sampler,l2):
config = dict()
config['model'] = model_name
config['lr'] = 0.01
config['l2'] = l2
config['batch_size'] = constants.batch_size
config['neg_sampler'] = neg_sampler
config['num_negs'] = 10
config['num_epochs']= 100
config['is_dev'] = False
config['ent_dim'] = 100
return config
if __name__=='__main__':
main()