-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexdesi.py
96 lines (79 loc) · 3.01 KB
/
exdesi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!python
# Copyright (c) 2014, Sven Thiele <sthiele78@gmail.com>
#
# This file is part of exdesi.
#
# exdesi is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# exdesi is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with iggy. If not, see <http://www.gnu.org/licenses/>.
# -*- coding: utf-8 -*-
import sys
import argparse
from pyasp.asp import *
from __exdesi__ import query, utils, bioquali
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("networkfiles",
help="directory of influence graphs in SIF format")
parser.add_argument("experivarfile",
help="experimental variables")
parser.add_argument('--best_set',type=int, default=-1,
help="compute best set of experiments maximal number of experiments, default is OFF, 0=unlimited")
parser.add_argument("-x", "--exclude",
help="exclude experiments described in file EXCLUDE")
args = parser.parse_args()
net_dir = args.networkfiles
exp_string = args.experivarfile
flist = os.listdir(net_dir)
NETS = TermSet()
print('\nReading',len(flist),'networks from',net_dir,'...',end='\n')
for f in flist :
net_string = os.path.join(net_dir,f)
print (' reading',net_string,'... ',end='')
net = bioquali.readSIFGraph(net_string)
NETS = TermSet(NETS.union(net))
print('done.')
print('\nReading experimental variables',exp_string, '... ',end='')
mu = bioquali.readExpVar(exp_string)
print('done.')
#print(mu)
if (args.exclude) :
print('\nReading excluded experiments',args.exclude, '... ',end='')
exclude = bioquali.readExcludedExp(args.exclude)
print('done.')
#print(exclude)
MU = TermSet(mu.union(exclude))
else : MU = mu
print('\nCompute best single experiment ...',end='')
experiments = query.get_best_single_experiments(NETS, MU)
print('done.')
if experiments == [] :
print("no experiment can distinguish the networks.")
print("add more readouts or more perturbations.")
else:
count = 0
for e in experiments :
count = count+1
print("best single experiment",count,":")
utils.print_experiment_table(e)
if args.best_set > -1 :
max_number_experiments = args.best_set
print('\nCompute best experiment sets (max experiments = '+str(max_number_experiments)+') ...',end='')
max_number_experiments = 10
experiments = query.get_best_experiment_sets(NETS,MU,max_number_experiments)
print('done.')
count = 0
for e in experiments :
count = count+1
print("best experiment set",count,":")
utils.print_experiment_table(e)
utils.clean_up()