-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.R
420 lines (403 loc) · 32.5 KB
/
app.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
## ***************************
##
## Script name: app.R
##
## Purpose of script: Contains UI and server functions to run RShiny dashboard.
##
## Author: Phoebe Lu, MPH
##
## Date Created: 2024-01-25
##
## Copyright (c) California Department of Public Health (CDPH)
## Email: Phoebe.Lu@cdph.ca.gov
##
## ***************************
#Need to source global.R file prior to running dashboard
source("global.R")
# Define UI for application that draws a histogram
ui <- fluidPage(
shinyjs::useShinyjs(),
# Sidebar with a slider input for number of bins
#Changed from tabsetPanel to navbarPage
navbarPage(id="Daily",
#Set theme of dashboard
theme = shinythemes::shinytheme("cosmo"),
inverse=T,
title="CalCORVID",
tabPanel(title="Home",
align="center",
HTML("<h3><b>Welcome to the California Clustering for Operational Real-time Visualization of Infectious Diseases Dashboard!</b></h3>"),
HTML("<h4 style='background-color:#FFFACD;'><i>Note: This dashboard displays sample results from running the prospective space-time analysis on California vaccination data.</i></h4>"),
HTML("<h4>Select an option below.</h4>"),
hr(),
fluidRow(column(6,
div(style='padding:15px;',
img(id="results_image",src="results.PNG", height="300px", style="cursor:pointer;", align="center")),
h4(strong("Results", align="center")),
"Click image above for results."),
column(6,
div(style='padding:15px;',
img(id="technotes_image", src="technotes.PNG", height="300px", style="cursor:pointer;", align="center")),
h4(strong("Technical Notes", align="center")),
"Click image above for technical notes."),
),
hr(),
HTML('<center><h5>Version 1.0|Released September 3, 2024|Compatible with SaTScan v10.2.1
</h5></center>'),
HTML('<center><h5>Contact: <a href="mailto:modeling@cdph.ca.gov">modeling@cdph.ca.gov</a>
</h5></center>'),
HTML('<center><p>Icons provided by thenounproject.com: <a href=https://thenounproject.com/icon/map-pack-4750908/>magnifier</a>|<a href=https://thenounproject.com/icon/notes-5219147/>notes</a>
</p></center>')
),
tabPanel(title="Results",
h4(strong(paste0("Cluster Results for ", model, " Analysis in ", state, " State"))),
HTML("<p><i>Dashboard instructions:
<br>
</i>Click on a row in the table to highlight the corresponding cluster. Clicking a cluster will display a pop-up containing average Social Vulnerability Index
calculations for each of the four themes and overall. To toggle on county boundaries, click on the 'County' checkbox on the map.</p>"),
fluidRow(align="center",
column(3, offset=2,
selectInput(inputId = "date_slider", label = HTML("<b>Date</b><br>Note: Reflects latest date model was run for."),
choices = unique(all_datasets_clean$END_DATE),
selected = max(unique(all_datasets_clean$END_DATE)))),
# column(4, offset=1,
# sliderInput(inputId="cluster_filter",
# label=HTML("<b>Filter clusters by recurrence interval (>= days)</b>"),
# min=1,
# max=1825,
# value=1,
# step=5,
# ticks=T))
column(4, offset=1,
sliderTextInput(inputId="cluster_filter",
label=HTML("<b>Filter clusters by >= recurrence interval (days)</b>"),
choices=days,
selected=365,
grid=T
))
# column(4, offset=1,
# checkboxInput(inputId="cluster_filter", label= HTML("<b>Show statistically significant clusters only (p-value <= 0.05)</b>"),
# value = F))
),
fluidRow(align="center", splitLayout(cellWidths = c("38%", "58%"),
leafletOutput("state_map", width="auto", height="600px"),
div(DTOutput("state_table"), style = "font-size:100%; font-family: Calibri; margin-left:50px"))),
hr()),
tabPanel(title="Technical Notes",
HTML("<h4><b>Methodology</b></h4>"),
tabsetPanel(type="tabs",
tabPanel("CalCORVID Dashboard", align="left",
HTML("<b>Description</b>"),
HTML("<p>This dashboard facilitates the visualization of spatial clusters and is designed for usage in an applied public health setting.
Additional documentation for adapting this dashboard for your jurisdiction's needs is available in the README file.</p>"),
HTML(" CalCORVID is written in the R programming language and is released under the <a href='https://opensource.org/license/mit/'>MIT Open Source License</a>.
The current distribution includes CalCORVID source code, tutorials on using the software, and detailed descriptions of the configuration parameters. The documentation also describes the overall structure of the dashboard and
basic RShiny functionalities for individuals who may be interested in customizing CalCORVID for their own use. The primary output of this repository is open source dashboard code for users to adapt for their spatiotemporal
cluster outputs from SaTScan software. This dashboard can be used for epidemiologists conducting routine surveillance or to share with other stakeholders who may be interested in disease clustering.
The documentation describes the input files needed to display correctly on the dashboard and the parameters to change for successful adaptation to other jurisdictions’ results. CalCORVID is distributed with sample data from
the rsatscan package to demonstrate data preprocessing and dashboard display. An additional simulated dataset is provided and detailed in the README file for users to adapt and become more familiar with the structure of the
dashboard before generating their own data.")),
tabPanel("SaTScan", align="left",
HTML("<b>Background</b>"),
HTML("<p>SaTScan is a free statistical software that analyzes data using spatial, temporal, or spatiotemporal scan statistics.
It is a <a href='https://www.satscan.org/'>free download</a> and the source documentation is available
<a href='https://www.satscan.org/cgi-bin/satscan/register.pl/SaTScan_Users_Guide.pdf?todo=process_userguide_download'>here</a>.
SaTScan has been applied to many different fields to identify low and/or high clusters of events across space and time. In applied
public health settings, SaTScan is often used to identify abnormal clusters of disease and is typically used to complement traditional
disease surveillance methods.</p>"),
HTML("<b>Methodology Overview</b>"),
HTML("<p>Clusters in this spatiotemporal context can be thought of as 3-dimensional cylinders, with the base and height corresponding to the spatial and
time units, respectively. The user specifies a geographic unit to scan over, such as census tracts in the state of California, and the
temporal window of interest to detect clusters, such as 14-21 days. The spatiotemporal scan statistic then creates permutations of all potential
combinations of the spatial and time units, and each of these permutations is considered a potential cluster. An observed and expected case count
is calculated for each potential cluster, and the scan statistic scans over all the clusters to identify those that have a greater expected case count
than observed case count (the abnormal clusters.) These abnormal clusters are then reported by the SaTScan software to the user.</p>
<p>There are several different analyses and probability models that can be used. The input files and parameters will differ based on the chosen
analysis and/or probability model. For example, SaTScan requires a case file and population file if using the space-time analysis with the discrete Poisson
probability model, and only requires the case file for the space-time permutation. The space-time analysis calculates the expected case count by
standardizing the case counts for each geographic unit (e.g., cases in census tract x) to the population counts (e.g., census population in census tract x.)
On the other hand, the space-time permutation does not require a population file and calculates the expected case count only using the case file.</p>")),
tabPanel("Social Vulnerability Index (SVI)", align="left",
HTML("<b>Background</b>"),
HTML("<p>The Centers for Disease Control/Agency for Toxic Substances and Disease Registry (CDC/ATSDR) provides the Social Vulnerability Index (SVI)
as a population-level metric for comparing social vulnerability across geographies. Social vulnerability is based on the idea that potential negative
effects on communities caused by external stresses on human health exist, and by lowering vulnerability will also lower human suffering and economic loss.
SVI was originally designed to help public health officials and emergency response planners identify and map the communities that will most likely need support
before, during, and after a hazardous event, but has also been used as a proxy for describing the population-level socioeconomic environment.</p>"),
HTML("<p>SVI data is available from the <a href='https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html'> CDC website </a> at the
census tract and county levels. Zip-code level SVI requires the use of a crosswalk as outlined in their
<a href='https://www.atsdr.cdc.gov/placeandhealth/svi/faq_svi.html'>FAQ</a>, but by using the <i>findSVI</i> package, we are able to
easily integrate zip code-level SVI into the CalCORVID dashboard. Otherwise, SVI is given at the county and census tract levels.</p>"),
HTML("<p>SVI is calculated using 16 Census variables and is composed of 4 themes.
The CDC/ATSDR SVI ranking variables for the four themes are:
<li>RPL_THEME1 for the Socioeconomic Status theme,</li>
<li>RPL_THEME2 for the Household Characteristics theme, </li>
<li>RPL_THEME3 for the Racial & Ethnic Minority Status theme, </li>
<li>RPL_THEME4 for the Housing Type & Transportation theme </li>
<li>RPL_THEMES for overall vulnerability</li>
<br>
The breakdown for each theme is shown below, with variables obtained from American Community Survey (ACS), 2016-2020 (5-year) data:
<br>
<img src='svi.png', height=500px, width=600px></img>
<br>
<small><a href='https://www.atsdr.cdc.gov/placeandhealth/svi/documentation/SVI_documentation_2020.html'>Source</a></small>
<br>
<br>"),
HTML("<b>Interpretation</b>"),
HTML("<p>A percentile ranking represents the proportion of tracts (or zip codes/counties) that are equal to or lower than a tract (or county) of interest in terms of social vulnerability.
For example, a CDC/ATSDR SVI ranking of 0.85 signifies that 85% of tracts (or zip codes/counties) in the state or nation are less vulnerable than the tract (or county) of interest and
that 15% of tracts (or counties) in the state or nation are more vulnerable.</p>
<br>"),
HTML("<b>Interpretation Example</b>
<br>"),
HTML("<img src='svi_popup_ex.PNG', height=200px, width=300px></img>
<br>This particular cluster contains 9 zip codes, 1 of which is missing SVI information so is not included in the mean calculations. SVI can be missing
for a variety of reasons, including tracts that have zero estimates for total population or any of the variables needed to calculate SVI was missing.
We then calculate the average percentile ranking for each of the 8 remaining zip codes in the detected cluster, with percentiles of 0.85, 0.62,
0.94, and 0.83 for the Socioeconomic Status, Housing Characteristics, Racial & Ethnic Minority Status, and Housing Type & Transportation themes.
An average percentile of 0.85 for the Socioeconomic Status theme indicates that 85% of zip codes in New York state are less vulnerable than the
zip codes in the cluster, and 15% of zip codes in New York state are more vulnerable than the zip codes in the cluster. In other words,
the higher the percentile the more vulnerable the zip codes are. We also calculate a percentile for overall vulnerability across all four SVI ranking themes.
The overall vulnerability percentile describes the overall vulnerability of the 8 zip codes in the detected cluster.
<hr>")),
tabPanel("References", align="left",
HTML("<b>SaTScan:</b>"),
HTML("<li><a href='https://www.tandfonline.com/doi/abs/10.1080/03610929708831995'>Kulldorff, 1997:</a> A spatial scan statistic</li>
<li><a href='https://www.ncbi.nlm.nih.gov/pmc/articles/PMC548793/'>Kulldorff, 2005:</a> A Space–Time Permutation Scan Statistic for Disease Outbreak Detection</li>
<li><a href='https://www.satscan.org/cgi-bin/satscan/register.pl/SaTScan_Users_Guide.pdf?todo=process_userguide_download'>SaTScan User Guide Download</a></li>
<li><a href='https://preprints.jmir.org/preprint/50653'><i>Preprint; Levin-Rector, 2023</i>:</a> Prospective Spatiotemporal Cluster Detection using SaTScan: A Tutorial for Designing and Finetuning a System to Detect Reportable Communicable Disease Outbreaks</li>"),
br(),
HTML("<b>Social Vulnerability Index</b>"),
HTML("<li><a href='https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html'> (CDC/ASTDR) SVI Documentation Download</a></li>
<li><a href='https://pubmed.ncbi.nlm.nih.gov/33090977/'>Dasgupta, 2020</a>: Association Between Social Vulnerability and a County's Risk for Becoming a COVID-19 Hotspot - United States, June 1-July 25, 2020</li>
<li><a href='https://svi.cdc.gov/A%20Social%20Vulnerability%20Index%20for%20Disaster%20Management.pdf'>Flanagan, 2011</a>: A Social Vulnerability Index for Disaster Management</li>
<li><a href='https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179070/'>Flanagan, 2018</a>: Measuring Community Vulnerability to Natural and Anthropogenic Hazards: The Centers for Disease Control and Prevention’s Social Vulnerability Index</li>
<li><a href='https://pubmed.ncbi.nlm.nih.gov/34388054/'>Troppy, 2021</a>: Geographic Associations Between Social Factors and SARS-CoV-2 Testing Early in the COVID-19 Pandemic, February-June 2020, Massachusetts</li>"),
br(),
HTML("<b>Applied Public Health Examples:</b>"),
HTML("<li><a href='https://wwwnc.cdc.gov/eid/article/28/3/21-1147_article'>Gleason, 2022</a>: Development and Evaluation of Statewide Prospective Spatiotemporal Legionellosis Cluster Surveillance, New Jersey, USA</li>
<li><a href='https://wwwnc.cdc.gov/eid/article/27/5/20-3583_article'>Greene, 2021</a>: Detecting COVID-19 Clusters at High Spatiotemporal Resolution, New York City, New York, USA, June–July 2020</li>
<li><a href='https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1525257/'>Jones, 2006</a>: Use of a Prospective Space-Time Scan Statistic to Prioritize Shigellosis Case Investigations in an Urban Jurisdiction</li>
<li><a href='https://www.cdc.gov/mmwr/volumes/69/wr/mm6926a2.htm'>Latash, 2020</a>: Salmonellosis Outbreak Detected by Automated Spatiotemporal Analysis — New York City, May–June 2019</li>
<li><a href='https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000152/'>Mostashari, 2003</a>: Dead Bird Clusters as an Early Warning System for West Nile Virus Activity</li>"))
)),
tags$head(tags$style(".leaflet-top {z-index:999!important;}")) #overlays drop-down date selection over leaflet map
))
# Define server logic required to draw a histogram
server <- function(input, output, session) {
#Welcome page click to tab
shinyjs::onclick(id="results_image", updateTabsetPanel(session, inputId="Daily", selected="Results"))
shinyjs::onclick(id="technotes_image", updateTabsetPanel(session, inputId="Daily", selected="Technical Notes"))
#Dynamic labeling depending on specified geographic aggregation
label_reactive <- reactive({
ifelse(level=="zcta", "# of ZIP Codes",
ifelse(level=="county", "# of Counties",
ifelse(level=="tract", "# of Census Tracts", NA)))
})
#Render leaflet map
if(zoom_level=="state"){
output$state_map <- renderLeaflet({
leaflet() %>%
setView(lng=state_coords$Longitude, lat=state_coords$Latitude, zoom=state_coords$Zoom) %>%
addProviderTiles("CartoDB.Positron", group="CartoDB")
})
} else if (zoom_level=="cluster"){
output$state_map <- renderLeaflet({
leaflet() %>%
setView(lng=cluster_coords$Longitude, lat=cluster_coords$Latitude, zoom=cluster_coords$Zoom) %>%
addProviderTiles("CartoDB.Positron", group="CartoDB")
})
} else{
output$state_map <- renderLeaflet({
leaflet() %>%
setView(lng=state_coords$Longitude, lat=state_coords$Latitude, zoom=state_coords$Zoom) %>%
addProviderTiles("CartoDB.Positron", group="CartoDB")
})
}
#Filter based on run date and region to create underlying dataset for map and tables. This is the dataset
#underlying the location geographies on the leaflet map.
state_reactive <- reactive({
req(input$date_slider)
req(input$cluster_filter)
val <- input$cluster_filter
all_datasets_clean <- all_datasets_clean %>%
dplyr::filter(END_DATE == input$date_slider &
RECURR_INT >= val)
return(all_datasets_clean)
# req(!is.null(input$cluster_filter))
# if(input$cluster_filter==T){
# all_datasets_clean <- all_datasets_clean %>% dplyr::filter(END_DATE==input$date_slider,
# P_VALUE <= 0.05)
# } else if(input$cluster_filter==F){
# all_datasets_clean <- all_datasets_clean %>% dplyr::filter(END_DATE==input$date_slider)
# }
# return(all_datasets_clean)
# all_datasets_clean %>% dplyr::filter(END_DATE == input$date_slider)
})
#Create filtered version of state_reactive() to only display one cluster or row for display in table and layer
state_reactive_filter <- reactive({
state_reactive() %>%
dplyr::group_by(CLUSTER, END_DATE) %>%
dplyr::filter(row_number()==1)
})
#Reactive filter for table (builds off state_reactive(), but re-formats table and changes # of Locations to reflect level of geographic aggregation)
if(level=="zcta"){
state_reactive_table <- reactive({
state_reactive_filter() %>% data.frame() %>%
dplyr::select(CLUSTER, OBSERVED, EXPECTED,
START_DATE,END_DATE, NUMBER_LOC, P_VALUE_DISPLAY, RECURR_INT_DISPLAY) %>%
arrange(CLUSTER) %>%
rename(c("SaTScan Cluster ID"=CLUSTER,
"Start Date"=START_DATE, "End Date"=END_DATE,
"# of ZIP Codes"=NUMBER_LOC, "p-value"=P_VALUE_DISPLAY,
"Recurrence Interval"=RECURR_INT_DISPLAY, "Observed"=OBSERVED,
"Expected"=EXPECTED))
})
} else if(level=="county"){
state_reactive_table <- reactive({
state_reactive_filter() %>% data.frame() %>%
dplyr::select(CLUSTER, OBSERVED, EXPECTED,
START_DATE,END_DATE, NUMBER_LOC, P_VALUE_DISPLAY, RECURR_INT_DISPLAY) %>%
arrange(CLUSTER) %>%
rename(c("SaTScan Cluster ID"=CLUSTER,
"Start Date"=START_DATE, "End Date"=END_DATE,
"# of Counties"=NUMBER_LOC, "p-value"=P_VALUE_DISPLAY,
"Recurrence Interval"=RECURR_INT_DISPLAY, "Observed"=OBSERVED,
"Expected"=EXPECTED))
})
} else if(level=="tract"){
state_reactive_table <- reactive({
state_reactive() %>% data.frame() %>%
dplyr::select(CLUSTER, OBSERVED, EXPECTED,
START_DATE,END_DATE, NUMBER_LOC, P_VALUE_DISPLAY, RECURR_INT_DISPLAY) %>%
arrange(CLUSTER) %>%
rename(c("SaTScan Cluster ID"=CLUSTER,
"Start Date"=START_DATE, "End Date"=END_DATE,
"# of Census Tracts"=NUMBER_LOC, "p-value"=P_VALUE_DISPLAY,
"Recurrence Interval"=RECURR_INT_DISPLAY, "Observed"=OBSERVED,
"Expected"=EXPECTED))
})
} else{
state_reactive_table <- reactive({
state_reactive_filter() %>% data.frame() %>%
dplyr::select(CLUSTER, OBSERVED, EXPECTED,
START_DATE,END_DATE, NUMBER_LOC, P_VALUE_DISPLAY, RECURR_INT_DISPLAY) %>%
arrange(P_VALUE_DISPLAY) %>%
rename(c("SaTScan Cluster ID"=CLUSTER,
"Start Date"=START_DATE, "End Date"=END_DATE,
"# of Locations"=NUMBER_LOC, "p-value"=P_VALUE_DISPLAY,
"Recurrence Interval"=RECURR_INT_DISPLAY, "Observed"=OBSERVED,
"Expected"=EXPECTED))
})
}
#Render all_state_reactive_table() as datatable
output$state_table <- renderDT(
datatable(state_reactive_table(),
rownames=FALSE,
selection="single",
class="display",
options=list(stateSave=TRUE,
dom = 'Btsp',
columnDefs = list(list(className = 'dt-center', targets = "_all")))))
#Interactive markers on map
highlight_icon_1b = makeAwesomeIcon(icon='map-marker', library="fa", markerColor='green', iconColor='white')
observeEvent(input$state_table_rows_selected, ignoreNULL=F, {
row_selected = state_reactive_filter()[input$state_table_rows_selected, ]
proxy_state <- leafletProxy('state_map')
proxy_state %>%
clearMarkers() %>%
addAwesomeMarkers(layerId = as.character(row_selected$END_DATE),
lng = row_selected$LONGITUDE,
lat = row_selected$LATITUDE,
icon = highlight_icon_1b)
})
## OBSERVE FUNCTION FOR DYNAMIC MAPS
#Reactive function for county boundary layer
county_boundaries_reactive <- reactive({
county_boundaries
})
#Render leaflet map
observe({
if(!"LOC_ID_col" %in% colnames(state_reactive())) { #If circular scan not run, then don't output Cluster layer
input$Daily
leafletProxy(mapId = "state_map", data = state_reactive()) %>%
clearShapes() %>%
addPolygons(data=state_reactive(),
stroke=T, color="black", weight=1.0,
fillColor=~neon_pal_map(CLUSTER),
popup = paste0("<b>", label_reactive(), ": </b>", state_reactive()$NUMBER_LOC, "<br/>",
"<b>", label_reactive(), " Missing SVI: </b>", state_reactive()$NUM_SVI_NA, "<br/>",
"<b> 1) Socioeconomic Status: </b>", state_reactive()$MEAN_RPL_THEME1, "<br/>",
"<b> 2) Household Characteristics: </b>", state_reactive()$MEAN_RPL_THEME2, "<br/>",
"<b> 3) Racial & Ethnic Minority Status: </b>", state_reactive()$MEAN_RPL_THEME3, "<br/>",
"<b> 4) Housing Type & Transportation: </b>", state_reactive()$MEAN_RPL_THEME4, "<br/>",
"<b> Overall: </b>", state_reactive()$MEAN_RPL_THEMES, "<br/>")) %>%
addPolygons(data=county_boundaries_reactive(),
stroke=T, color="black", weight=2.0, fillOpacity=0,
options = pathOptions(clickable = FALSE),
group="County") %>%
addLabelOnlyMarkers(data=county_boundaries_reactive(),
lng=~long, lat=~lat,
label=~NAME,
labelOptions = labelOptions(noHide=T,
textOnly=T,
direction="left",
offset=c(0,10),
style=list('background-color'='white',
'color'="black",
'fontSize'="11px",
'fontWeight'="bold")),
group="County") %>%
addLayersControl(overlayGroups=c("County"),
options=layersControlOptions(collapsed=F)) %>%
hideGroup(c("County"))
} else if ("LOC_ID_col" %in% colnames(state_reactive())){ #If circular scan is run, output Cluster layer
input$Daily
leafletProxy(mapId = "state_map", data = state_reactive()) %>%
clearShapes() %>%
addPolygons(data=state_reactive(),
stroke=T, color="black",
fillColor=~neon_pal_map(CLUSTER), weight=1.0,
opacity=~ifelse(state_reactive()$RECURR_INT >= 100, 1.0, 0.5),
fillOpacity=~ifelse(state_reactive()$RECURR_INT >= 100, 1.0, 0.5),
popup = paste0("<b>", label_reactive(), ": </b>", state_reactive()$NUMBER_LOC, "<br/>",
"<b>", label_reactive(), " Missing SVI: </b>", state_reactive()$NUM_SVI_NA, "<br/>",
"<b> 1) Socioeconomic Status: </b>", state_reactive()$MEAN_RPL_THEME1, "<br/>",
"<b> 2) Household Characteristics: </b>", state_reactive()$MEAN_RPL_THEME2, "<br/>",
"<b> 3) Racial & Ethnic Minority Status: </b>", state_reactive()$MEAN_RPL_THEME3, "<br/>",
"<b> 4) Housing Type & Transportation: </b>", state_reactive()$MEAN_RPL_THEME4, "<br/>",
"<b> Overall: </b>", state_reactive()$MEAN_RPL_THEMES, "<br/>")) %>%
addPolygons(data=county_boundaries_reactive(),
stroke=T, color="black", weight=2.0, fillOpacity=0,
options = pathOptions(clickable = FALSE),
group="County") %>%
addCircles(data = state_reactive_filter(), lng=state_reactive_filter()$LONGITUDE, lat=state_reactive_filter()$LATITUDE, radius=state_reactive_filter()$RADIUS_M,
color = ~ifelse(state_reactive_filter()$RECURR_INT >= 100, "red", "darkorange"), opacity=1, weight=1,
label=paste0(state_reactive_filter()$CLUSTER),
labelOptions = labelOptions(noHide=T,
textOnly=T,
direction = "center",
style = list(
"color"="black",
"font-weight" = "bold")),
group="Cluster") %>%
addLabelOnlyMarkers(data=county_boundaries_reactive(),
lng=~long, lat=~lat,
label=~NAME,
labelOptions = labelOptions(noHide=T,
textOnly=T,
direction="left",
offset=c(0,10),
style=list('background-color'='white',
'color'="black",
'fontSize'="11px",
'fontWeight'="bold")),
group="County") %>%
addLayersControl(overlayGroups=c("County", "Cluster"),
options=layersControlOptions(collapsed=F)) %>%
hideGroup(c("County", "Cluster"))
}
})
}
# Run the application
shinyApp(ui = ui, server = server)