-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
140 lines (120 loc) · 6.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import os
from config import Config
from network.rtpose_vgg import get_model, use_vgg
from dataset import Dataset
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim
import numpy as np
from tensorboardX import SummaryWriter
def _train(class_name, path_to_data_dir, path_to_logs_dir, batch_size, epochs, restore):
# create tensorboard
writer = SummaryWriter(path_to_logs_dir)
# dataloader
train_dataset = Dataset(class_name=class_name, path_to_data=path_to_data_dir)
train_dataloader = DataLoader(train_dataset, batch_size, shuffle=True, num_workers=0, drop_last=True)
val_dataset = Dataset(path_to_data=path_to_data_dir, class_name=class_name, split='val')
val_dataloader = DataLoader(val_dataset, batch_size, shuffle=False, num_workers=0, drop_last=True)
# load model
model = get_model(trunk='vgg19')
model = model.cuda()
use_vgg(model, './model', 'vgg19')
# restore model
if restore:
model.load_state_dict(torch.load(restore))
model.train()
# freeze low-level layer
for i in range(20):
for param in model.model0[i].parameters():
param.requires_grad = False
trainable_vars = [param for param in model.parameters() if param.requires_grad]
optimizer = torch.optim.Adam(trainable_vars, lr=0.0001)
epoch = 0
step = 1
best_mse = 1.0
while epoch != epochs:
for batch_index, (images, heatmaps_target, pafs_target, _, _) in enumerate(train_dataloader):
images = images.cuda()
_, saved_for_loss = model(images)
loss, heatmaps_losses, pafs_losses = _loss(saved_for_loss, heatmaps_target.cuda(), pafs_target.cuda())
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 10 == 0:
print('Epoch: {}, Step: {}, Loss: {}' .format(epoch, step, loss.data.item()))
writer.add_scalar('train_total_loss/loss', loss, step)
for stage, (heatmaps_loss, pafs_loss) in enumerate(zip(heatmaps_losses, pafs_losses)):
writer.add_scalar('train_heatmaps_loss/stage_{}' .format(str(stage)), heatmaps_loss, step)
writer.add_scalar('train_pafs_loss/stage_{}' .format(str(stage)), pafs_loss, step)
if step % 1000 == 0:
pafs_loss, heatmaps_loss = _validate(model, val_dataloader)
total_loss = pafs_loss + heatmaps_loss
print('Validation Paf MSE: {} Heatmap MSE: {} Total MSE: {}' .format(pafs_loss, heatmaps_loss, total_loss))
writer.add_scalar('val/heatmaps_loss', heatmaps_loss, step)
writer.add_scalar('val/pafs_loss', pafs_loss, step)
writer.add_scalar('val/total_loss', total_loss, step)
if total_loss < best_mse:
print('Save checkpoint')
torch.save(model.state_dict(), os.path.join(path_to_logs_dir, '{}-checkpoint-best.pth'.format(class_name)))
best_mse = total_loss
print('Best MSE: {}' .format(total_loss))
model.train()
step += 1
epoch += 1
print('Save checkpoint')
torch.save(model.state_dict(), os.path.join(path_to_logs_dir, '{}-checkpoint-last.pth'.format(class_name)))
def _validate(model, val_dataloader):
model.eval()
total_pafs_mse = []
total_heatmaps_mse = []
for batch_index, (images, heatmaps_target, pafs_target) in enumerate(val_dataloader):
images = images.cuda()
out, _ = model(images)
pafs_pred = out[0].detach().cpu().numpy()
pafs_target = pafs_target.numpy()
heatmaps_pred = out[1].detach().cpu().numpy()
heatmaps_target = heatmaps_target.numpy()
pafs_mse = np.nanmean((pafs_pred - pafs_target) **2)
heatmaps_mse = np.nanmean((heatmaps_pred - heatmaps_target) **2)
total_pafs_mse.append(pafs_mse)
total_heatmaps_mse.append(heatmaps_mse)
total_pafs_mse = np.array(total_pafs_mse).mean()
total_heatmaps_mse = np.array(total_heatmaps_mse).mean()
return total_pafs_mse, total_heatmaps_mse
def _loss(saved_for_loss, heatmaps_target, pafs_target):
criterion = nn.MSELoss().cuda()
total_loss = 0
heatmaps_losses = []
pafs_losses = []
for i in range(Config.output_stage):
pafs_pred = saved_for_loss[2*i]
heatmaps_pred = saved_for_loss[2*i+1]
heatmaps_loss = criterion(heatmaps_pred, heatmaps_target)
heatmaps_losses.append(heatmaps_loss)
pafs_loss = criterion(pafs_pred, pafs_target)
pafs_losses.append(pafs_loss)
total_loss += heatmaps_loss + pafs_loss
return total_loss, heatmaps_losses, pafs_losses
if __name__ == '__main__':
def main(args):
path_to_data_dir = args.path_to_data_dir
if not os.path.exists(path_to_data_dir):
raise FileNotFoundError(path_to_data_dir)
path_to_logs_dir = args.path_to_logs_dir
if path_to_logs_dir:
os.makedirs(path_to_logs_dir, exist_ok=True)
class_name = args.class_name
batch_size = args.batch_size
epochs = args.epochs
restore = args.restore_checkpoint
_train(class_name, path_to_data_dir, path_to_logs_dir, batch_size, epochs, restore)
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--path_to_data_dir', default='/media/ssd_external/Bottle_dataset_split', help='path to data directory')
parser.add_argument('-l', '--path_to_logs_dir', default='./logs', help='path to logs directory')
parser.add_argument('-b', '--batch_size', default=32, type=int, help='batch size')
parser.add_argument('-e', '--epochs', default=10, type=int, help='epochs')
parser.add_argument('-class', '--class_name', dest="class_name", choices=["Jack_Daniels", "Jose_Cuervo"], default="Jack_Daniels", type=str, help='the class name of object')
parser.add_argument('-r', '--restore_checkpoint', default=None,
help='path to restore checkpoint file, e.g., ./logs/model-100.pth')
main(parser.parse_args())