-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathbinary_search.py
102 lines (83 loc) · 2.78 KB
/
binary_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""
Given a sorted list of numbers, determine if an element is
in a list
"""
import random
import string
import numpy as np
import pandas as pd
from typing import List, Tuple, Set, Dict
from utils.profiler import time_this, timed_report
from utils.profiler import ExponentialRange
import bisect
def random_numeric_list(n: int) -> List[float]:
return list(np.random.random(n))
@time_this(lambda *args, **kwargs: len(args[0]))
def naive_in_operator(values: List[float],
target: float) -> bool:
"""
Given a list of floats that are assumed to be sorted,
determine if an element is in the list with early
stopping. This is O(n)
"""
for value in values:
if target == value:
return True
def _binary_search_in(values: np.ndarray,
target: float) -> bool:
"""
Recursive part of binary_search_in
"""
# Split list in half
n = len(values)
i = n // 2
if n > 1:
# Search the upper or lower part of the list
if target >= values[i]:
return _binary_search_in(values[i:], target)
else:
return _binary_search_in(values[:i], target)
else:
# Else, test for equality
return values[i] == target
@time_this(lambda *args, **kwargs: len(args[0]))
def binary_search_in(values: np.ndarray,
target: float) -> bool:
"""
Given a numpy array of floats that are assumed to be
sorted, determine if an element is in it. We use numpy
arrays here because it is important that array slices
are passed by reference, rather than copied.
This is O(log(n))
"""
return _binary_search_in(values, target)
@time_this(lambda *args, **kwargs: len(args[0]))
def bisect_search_in(values: List[float],
target: float) -> bool:
"""
Given a list of floats that are assumed to be sorted,
determine if an element is in the list using Python's
bisect library. This is O(log(n))
"""
# Find the insertion point of target within values to
# maintain search order using binary search
i = bisect.bisect_left(values, target)
# If in bounds, make comparison
if 0 <= i < len(values):
return values[i] == target
# Otherwise it is definitely not a match
return False
if __name__ == '__main__':
exp_range = ExponentialRange(1, 7, 1/4)
values = random_numeric_list(exp_range.max)
values.sort()
with timed_report():
for i in exp_range.iterator():
result = naive_in_operator(values[:i], values[i-1])
assert result
for i in exp_range.iterator():
result = binary_search_in(np.array(values[:i]), values[i-1])
assert result
for i in exp_range.iterator():
result = bisect_search_in(values[:i], values[i-1])
assert result