-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathcount_occurrences.py
230 lines (173 loc) · 6.14 KB
/
count_occurrences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""
Given a list of words, count the number of occurrences of
each word in the list. Return a logical data structure to
represent the count corresponding to each word.
"""
import random
import string
import pandas as pd
import numpy as np
from numba import jit
from collections import defaultdict, Counter
from typing import List, Tuple, Dict
from utils.profiler import time_this, timed_report
from utils.profiler import ExponentialRange
def random_words(n: int) -> List[str]:
characters = string.ascii_uppercase + string.digits
big_list = random.choices(characters, k=n*7)
return [''.join(big_list[i:(i+7)]) for i in range(n)]
def random_characters(n: int) -> List[str]:
characters = string.ascii_uppercase + string.digits
return random.choices(characters, k=n)
@time_this(lambda *args, **kwargs: len(args[0]))
def slow_count_occurrences(
the_words: List[str]) -> List[Tuple[str, int]]:
"""
This algorithm is O(nm) for n total words and m unique
words
"""
# Our output data structure will be a list of tuples
count_by_word = list()
# Get a list of all unique words using set
unique_words = set(the_words)
# Loop through unique words
for word_a in unique_words:
# Count the occurences
accumulator = 0
for word_b in the_words:
if word_a == word_b:
accumulator += 1
# Store the character with the count
count_by_word.append((word_a, accumulator))
return count_by_word
@time_this(lambda *args, **kwargs: len(args[0]))
def fast_count_occurrences(
the_words: List[str]) -> Dict[str, int]:
"""
This algorithm is O(n) for n words
"""
# Our output data structure
count_by_word = dict()
# Loop through the words
for word in the_words:
# Make sure the dictionary knows about the words
if not word in count_by_word:
count_by_word[word] = 0
# Incriment the counter
count_by_word[word] += 1
return count_by_word
@time_this(lambda *args, **kwargs: len(args[0]))
def defaultdict_fast_count(
the_words: List[str]) -> Dict[str, int]:
"""
This algorithm is O(n) for n words
"""
# A dictionary whose values default to zero
count_by_word = defaultdict(int)
# Loop through the words
for word in the_words:
# Incriment the counter
count_by_word[word] += 1
return count_by_word
@time_this(lambda *args, **kwargs: len(args[0]))
def counter_fast_count(
the_words: List[str]) -> Dict[str, int]:
"""
This algorithm is O(n) for n words
"""
return Counter(the_words)
@time_this(lambda *args, **kwargs: len(args[0]))
def np_fast_count(
the_words: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
This algorithm is O(n) for n words
"""
return np.unique(the_words, return_counts=True)
@time_this(lambda *args, **kwargs: len(args[0]))
def pd_fast_count(
the_words: pd.Series) -> pd.Series:
"""
This algorithm is O(n) for n words
"""
return the_words.value_counts()
from collections import Counter
from joblib import Parallel, delayed
import math
def _counter_fast_count(
the_words: List[str]) -> Dict[str, int]:
return Counter(the_words)
N_JOBS = 8
@time_this(lambda *args, **kwargs: len(args[0]))
def parallel_fast_count(
the_words: List[str]) -> Dict[str, int]:
"""
Count words in parallel using joblib, then aggregate the
results. This is still O(n+m) complexity for constant k,
or O(n+km) for variable k.
"""
# Figure out chunk sizes
s = chunk_size = math.ceil(len(the_words) / N_JOBS)
chunk_slices = [(i*s, (i+1)*s) for i in range(N_JOBS)]
# Set up parallel wrapper and functions
parallel = Parallel(n_jobs=N_JOBS)
delayed_count = delayed(_counter_fast_count)
# Dispatch parallel computation
counters: List[Dict[str, int]] = parallel(
delayed_count(the_words[i:j]) for \
i, j in chunk_slices
)
# Aggregate result
result_count: Dict[str, int] = Counter()
for counter in counters:
# Counter.update sums counts
result_count.update(counter)
return result_count
if __name__ == '__main__':
# the_words = ['A', 'A', 'A', 'B', 'B', 'B', 'C'] * 100
# print(slow_count_occurrences(the_words))
# print(fast_count_occurrences(the_words))
# print(defaultdict_fast_count(the_words))
# print(counter_fast_count(the_words))
# print(np_fast_count(np.array(the_words)))
# print(pd_fast_count(pd.Series(the_words)))
# print(parallel_fast_count(the_words))
exp_range = ExponentialRange(0, 7, 1/4)
the_words = random_words(exp_range.max)
the_array = np.array(the_words)
the_series = pd.Series(the_words)
with timed_report():
for i in exp_range.iterator(4):
slow_count_occurrences(the_words[:i])
for i in exp_range.iterator():
fast_count_occurrences(the_words[:i])
for i in exp_range.iterator():
defaultdict_fast_count(the_words[:i])
for i in exp_range.iterator():
counter_fast_count(the_words[:i])
for i in exp_range.iterator():
np_fast_count(the_array[:i])
for i in exp_range.iterator():
pd_fast_count(the_series[:i])
for i in exp_range.iterator():
parallel_fast_count(the_words[:i])
exp_range = ExponentialRange(2, 8, 1/4)
the_words = random_characters(exp_range.max)
the_array = np.array(the_words)
the_series = pd.Series(the_words)
with timed_report():
for i in exp_range.iterator(6):
slow_count_occurrences(the_words[:i])
for i in exp_range.iterator():
fast_count_occurrences(the_words[:i])
for i in exp_range.iterator():
defaultdict_fast_count(the_words[:i])
for i in exp_range.iterator():
counter_fast_count(the_words[:i])
for i in exp_range.iterator():
np_fast_count(the_array[:i])
for i in exp_range.iterator(6):
pd_fast_count(the_series[:i])
for i in exp_range.iterator(7):
if i < 100:
continue
parallel_fast_count(the_words[:i])