-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrecsSimul.m
331 lines (308 loc) · 12.9 KB
/
recsSimul.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
function [ssim,xsim,esim,stat,fsim] = recsSimul(model,interp,s0,nper,shocks,options)
% RECSSIMUL Simulates a model from starting values given in s0 and for nper period
%
% SSIM = RECSSIMUL(MODEL,INTERP,S0,NPER) simulates the model defined in the
% object MODEL, by using the interpolation structure defined in the structure
% INTERP. The simulation starts from the initial state S0 and lasts NPER (scalar)
% periods. S0 is a nrep-by-d matrix with nrep the number of scenarios to simulate,
% and d the number of state variables. RECSSIMUL returns the nrep-by-d-by-nper
% array SSIM that contains the simulated state variables.
% MODEL is an object created by recsmodel.
% INTERP is a structure, which includes the following fields:
% ch : coefficient matrix of the interpolation of the expectations
% function (optional, to be provided with method 'expfunapprox')
% cx : coefficient matrix of the interpolation of the response variables
% cz : coefficient matrix of the interpolation of the expectations variables
% fspace : a definition structure for the interpolation family (created by
% the function fundef)
%
% SSIM = RECSSIMUL(MODEL,INTERP,S0,NPER,SHOCKS) uses the nrep-by-q-by-(nper-1) array
% SHOCKS to simulate the model instead of drawing random numbers. In this case
% size(SHOCKS,3) supersedes NPER.
%
% SSIM = RECSSIMUL(MODEL,INTERP,S0,NPER,SHOCKS,OPTIONS) simulates the model with
% the parameters defined by the structure OPTIONS. The fields of the structure are
% accuracy : 1 to check accuracy on the asymptotic distribution (default: 0)
% display : 1 (default) to display outputs
% eqsolver : 'fsolve', 'lmmcp' (default), 'ncpsolve' or 'path'
% eqsolveroptions : options structure to be passed to eqsolver
% extrapolate : 1 if extrapolation is allowed outside the
% interpolation space or 0 to forbid it (default: 1)
% functional : 1 if the equilibrium equations are a functional equation
% problem (default: 0)
% loop_over_s : 0 (default) to solve all grid points at once, 1 to loop
% over each grid points, or n to loop over n blocks of
% grid points
% funapprox : 'expapprox', 'expfunapprox', or 'resapprox' (default)
% simulmethod : 'interpolation' (default) or 'solve'
% stat : 1 to ouput summary statistics from the simulation
% (default: 0)
% UseParallel : 'always' (default) to use parallel calculation (require
% Parallel Computing Toolbox)' or never'
%
% [SSIM,XSIM] = RECSSIMUL(MODEL,INTERP,S0,NPER,...) returns the nrep-by-m-by-nper
% array XSIM that contains the simulated response variables.
%
% [SSIM,XSIM,ESIM] = RECSSIMUL(MODEL,INTERP,S0,NPER,...) returns the
% nrep-by-q-by-nper array ESIM that contains the shocks.
%
% [SSIM,XSIM,ESIM,STAT] = RECSSIMUL(MODEL,INTERP,S0,NPER,...) returns summary
% statistics as a structure that contains the number of observations (STAT.N),
% the moments (STAT.MOMENTS), the correlation between variables (STAT.COR), and
% the autocorrelation (STAT.ACOR). Asking RECSSIMUL to return STAT forces the
% OPTIONS.STAT to 1.
%
% [SSIM,XSIM,ESIM,STAT,FSIM] = RECSSIMUL(MODEL,INTERP,S0,NPER,...) returns the
% nrep-by-m-by-nper array FSIM that contains the value of the equilibrium
% equations on the simulation.
%
% See also RECSACCURACY, RECSDECISIONRULES, RECSIRF.
% Copyright (C) 2011-2022 Christophe Gouel
% Licensed under the Expat license, see LICENSE.txt
%% Initialization
if nargin<5
shocks = [];
if nargin<4
nper = [];
if nargin<3
error('Not enough input arguments');
end
end
end
[d,m] = model.dim{1:2};
validateattributes(s0,{'numeric'},{'size',[NaN,d],'nonempty'},3)
nrep = size(s0,1);
if ~isempty(shocks) && (numel(shocks)~=d || isempty(nper))
nper = size(shocks,3)+1;
end
if isempty(nper) || nper==0, nper = 1; end
defaultopt = struct(...
'accuracy' , 0 ,...
'ArrayProblem' , false ,...
'display' , 1 ,...
'eqsolver' , 'lmmcp' ,...
'eqsolveroptions' , struct('Diagnostics' , 'off' ,...
'DerivativeCheck', 'off' ,...
'Jacobian' , 'on') ,...
'extrapolate' , 1 ,...
'funapprox' , 'resapprox' ,...
'functional' , 0 ,...
'loop_over_s' , 0 ,...
'simulmethod' , 'interpolation' ,...
'stat' , 0 ,...
'Tburn' , 20 ,...
'UseParallel' , 'always');
if nargin<6
options = defaultopt;
else
if isfield(options,'eqsolveroptions')
options.eqsolveroptions = catstruct(defaultopt.eqsolveroptions,options.eqsolveroptions);
end
options = catstruct(defaultopt,options);
end
display = options.display;
extrapolate = options.extrapolate;
functional = options.functional;
funapprox = lower(options.funapprox);
simulmethod = lower(options.simulmethod);
statdisplay = options.stat;
Tburn = options.Tburn;
if ~any(strcmp(simulmethod,{'interpolation','solve'}))
warning('RECS:OptionError',['The simulmethod field can take only the values ' ...
'''interpolation'' or ''solve''. Simulations will ' ...
'be carried out using the default option, ''interpolation''.'])
end
switch lower(options.UseParallel)
case 'never'
UseParallel = 0;
case 'always'
UseParallel = nrep;
end
b = model.functions.b;
e = model.shocks.e;
f = model.functions.f;
g = model.functions.g;
h = model.functions.h;
ixforward = model.infos.ixforward;
params = model.params;
w = model.shocks.w;
if isfield(model.shocks,'funrand') % Check if a random shocks generator function is provided
funrand = model.shocks.funrand;
else % Use the discretisation to generate the shocks
funrand = @(N) e(discrand(N,w),:); % could be implemented also with datasample
end
q = size(funrand(1),2);
fspace = interp.fspace;
if isfield(interp,'cX')
cX = interp.cX;
T = size(interp.cX,3);
else
cz = interp.cz;
cx = interp.cx;
if functional, params = [params fspace cx]; end
end
%% Generate shocks
ssim = zeros(nrep,d,nper);
ssim(:,:,1) = s0;
xsim = zeros(nrep,m,nper);
esim = NaN(nrep,q,nper);
if nargout==5, fsim = zeros(nrep,m,nper); end
if isempty(shocks)
for t=2:nper, esim(:,:,t) = funrand(nrep); end
elseif numel(shocks)==q
esim(:,:,2:end) = shocks(ones(nrep,1),:,ones(nper-1,1));
else
esim(:,:,2:end) = shocks;
end
%% Simulate the model
for t=1:nper
if t>1, ssim(:,:,t) = g(ssim(:,:,t-1),xsim(:,:,t-1),esim(:,:,t),params); end
if extrapolate, sinterp = ssim(:,:,t);
else
sinterp = max(min(ssim(:,:,t),fspace.b(ones(nrep,1),:)), ...
fspace.a(ones(nrep,1),:));
end
[LB,UB] = b(ssim(:,:,t),params);
Phi = funbasx(fspace,sinterp);
if exist('cX','var')
xsim(:,:,t) = min(max(funeval(cX(:,:,min(t,T)),fspace,Phi),LB),UB);
if nargout==5, fval = NaN(nrep,m); end
else
xsim(:,:,t) = min(max(funeval(cx,fspace,Phi),LB),UB);
switch simulmethod
case 'solve'
switch funapprox
case 'expapprox'
[xsim(:,:,t),fval] = recsSolveEquilibrium(ssim(:,:,t),...
xsim(:,:,t),...
funeval(cz,fspace,Phi),...
b,f,g,h,...
params,...
[],[],[],[],...
ixforward,options);
case 'resapprox'
[xsim(:,:,t),fval] = recsSolveEquilibrium(ssim(:,:,t),...
xsim(:,:,t),...
zeros(nrep,0),...
b,f,g,h,...
params,...
cx(:,ixforward),e,w,fspace,...
ixforward,options);
case 'expfunapprox'
if functional, params{end} = interp.ch; end
[xsim(:,:,t),fval] = recsSolveEquilibrium(ssim(:,:,t),...
xsim(:,:,t),...
zeros(nrep,0),...
b,f,g,h,...
params,...
interp.ch,e,w,fspace,...
ixforward,options);
end % switch funapprox
otherwise
if nargout==5
fval = f(ssim(:,:,t),xsim(:,:,t),funeval(cz,fspace,Phi),params);
end
end % switch simulmethod
end % Finite or infinite horizon problem
if nargout==5, fsim(:,:,t) = fval; end
end % for t
if exist('cX','var') && t>T
warning('RECS:ExceedHorizon','Simulate beyond last period')
end
%% Check if state satisfies bounds
ssimlong = reshape(permute(ssim,[1 3 2]),[],d);
vari = 1:d;
varmin = vari(min(ssimlong,[],1)<fspace.a);
varmax = vari(max(ssimlong,[],1)>fspace.b);
if ~isempty(varmin)
warning('RECS:Extrapolation','Extrapolating state variables (%s) beyond smin',...
int2str(varmin))
end
if ~isempty(varmax)
warning('RECS:Extrapolation','Extrapolating state variables (%s) beyond smax',...
int2str(varmax))
end
clear('ssimlong')
%% Compute some descriptive statistics
if nargout>=4 || statdisplay
if nper >= Tburn+20
if exist('table','file'), tabularform = true;
else tabularform = false;
end
symbols = [model.symbols.states model.symbols.controls];
X = cat(2,ssim,xsim);
X = permute(X(:,:,(Tburn+1):end),[2 1 3]);
X = reshape(X,d+m,[])';
% Sample size
stat.n = size(X,1);
% Percent of time spent at the bounds
[LB,UB] = b(X(:,1:d),params);
pLB = [NaN(1,d) mean(abs(X(:,d+1:d+m)-LB)<eps,1)*100];
pUB = [NaN(1,d) mean(abs(UB-X(:,d+1:d+m))<eps,1)*100];
mX = mean(X,1);
y = bsxfun(@minus,X,mX);
varX = mean(y.*y,1);
stat.moments = [mX' sqrt(varX)' (mean(y.^3,1)./varX.^1.5)' ...
(mean(y.^4,1)./(varX.*varX))' min(X)' max(X)' pLB' pUB'];
if tabularform
stat.moments = array2table(stat.moments,...
'RowNames',symbols,...
'VariableNames',...
{'Mean' 'StdDev' 'Skewness' 'Kurtosis' 'Min' 'Max' 'pLB' 'pUB'});
end
if display==1
fprintf(1,'Statistics from simulated variables (excluding the first %i observations):\n',Tburn);
disp(' Moments');
if tabularform
disp(stat.moments)
else
disp(' Mean Std. Dev. Skewness Kurtosis Min Max %LB %UB');
disp(stat.moments(1:d,1:end-2))
disp(stat.moments(d+1:end,:))
end
end
stat.cor = corrcoef(X);
if tabularform
stat.cor = array2table(stat.cor,'RowNames',symbols,'VariableNames',symbols);
end
if display==1
disp(' Correlation');
disp(stat.cor);
figure
for i=1:d+m
subplot(ceil((d+m)/ceil(sqrt(d+m))),ceil(sqrt(d+m)),i)
hist(X(:,i),log2(size(X,1))+1)
xlabel(symbols{i});
end
end
X = cat(2,ssim,xsim);
X = permute(X(:,:,(Tburn+1):end),[3 2 1]);
acor = zeros(d+m,5);
parfor (n=1:nrep, UseParallel)
acor = acor+autocor(X(:,:,n))/nrep;
end
if tabularform
stat.acor = array2table(acor,'RowNames',symbols,...
'VariableNames',{'T1' 'T2' 'T3' 'T4' 'T5'});
else
stat.acor = acor;
end
if display==1
disp(' Autocorrelation');
if tabularform
disp(stat.acor);
else
disp(' 1 2 3 4 5');
disp(stat.acor(1:d,:));
disp(stat.acor(d+1:end,:));
end
end
else
warning('Insufficient number of observations after burn-in period')
stat = [];
end
end % stat
%% Check accuracy
if options.accuracy
recsAccuracy(model,interp,ssim(:,:,(Tburn+1):end),options);
end