-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcompute_metrics.py
92 lines (67 loc) · 3.03 KB
/
compute_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy as np
import os
import sys
import glob
import torch
import pandas as pd
import matplotlib.pyplot as plt
import yaml
from ops.metric.sceneflow import ThreewayFlowMetric
model = str(sys.argv[1])
class_remap = {'Background' : 0,
'Road Sign?' : 5,
'Truck' : 6,
'Cyclist' : 15,
'Pedestrian' : 17,
'Vehicle' : 19,
'IDK' : 28,
'Overall' : None}
foreground_cls = ['Pedestrian', 'Cyclist', 'Vehicle', 'Truck']
background_cls = ['Background']
metric_dict = {k : ThreewayFlowMetric() for k in class_remap.keys()}
metric_dict["Overall"] = ThreewayFlowMetric()
with open('config.yaml') as file:
cfg = yaml.load(file, Loader=yaml.FullLoader)['cfg']
exp_folder = cfg['store_path'] + f'/{model}/'
files = sorted(glob.glob(exp_folder + '/*.npz'))
for file in files:
data = np.load(file, allow_pickle=True)
p1 = data['p1'][0]
p2 = data['p2'][0]
f1 = torch.from_numpy(data['f1'])
dynamic = torch.from_numpy(data['dynamic'])
category_indices = torch.from_numpy(data['category_indices'])
gt_flow = torch.from_numpy(data['compensated_gt_flow'][None]) # correct
foreground_points = [category_indices == class_remap[f] for f in foreground_cls]#.astype(bool)
background_points = [category_indices == class_remap[b] for b in background_cls]#.astype(bool)
foreground_points = torch.stack(foreground_points, dim=0).any(dim=0)
background_points = torch.stack(background_points, dim=0).any(dim=0)
### STORE METRICS
for k in metric_dict.keys():
if k == 'Overall':
dynamic_foreground_mask = dynamic & foreground_points
static_foreground_mask = ~dynamic & foreground_points # musi patrit do foregroundu
static_background_mask = ~dynamic & background_points
else:
mask = category_indices == class_remap[k]
dynamic_foreground_mask = dynamic & mask
static_foreground_mask = ~dynamic & mask # musi patrit do foregroundu
static_background_mask = ~dynamic & mask
# Eliminate non-existent metrics
if k in foreground_cls:
static_background_mask = torch.zeros_like(static_background_mask)
elif k in background_cls:
static_foreground_mask = torch.zeros_like(static_foreground_mask)
dynamic_foreground_mask = torch.zeros_like(dynamic_foreground_mask)
# Split overall into foreground and background
metric_dict[k].update(f1, gt_flow, -1, dynamic_foreground_mask, static_foreground_mask, static_background_mask)
### PRINT METRICS
def print_accumulated_metrics(metric_dict):
for k in metric_dict.keys():
T_D = metric_dict[k].DFG_metric.get_metric().mean()['EPE']
T_S = metric_dict[k].SFG_metric.get_metric().mean()['EPE']
T_B = metric_dict[k].SBG_metric.get_metric().mean()['EPE']
# break
Average = (T_D + T_S + T_B) / 3
print(f'Threeway EPE of {k}:', f"{Average:.3f}", f'{T_D:.3f}', f'{T_S:.3f}', f'{T_B:.3f}')
print_accumulated_metrics(metric_dict=metric_dict)