This repository has been archived by the owner on Apr 11, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathvideo.py
89 lines (79 loc) · 3.01 KB
/
video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import cv2
import time
import dlib
import argparse
import numpy as np
import tensorflow as tf
from model.mobilenetv2 import AgenderNetMobileNetV2
from keras import backend as K
from utils.stream import WebcamVideoStream
from utils.stream import FPS
from utils.sort import (
convert_bbox_to_z, convert_x_to_bbox, KalmanBoxTracker, Sort,
associate_detections_to_trackers
)
global model, graph
ap = argparse.ArgumentParser()
ap.add_argument("-s", "--src", default=0,
help="Video stream source, default will be webcam (0)")
args = vars(ap.parse_args())
def get_pos_from_rect(rect):
return (rect.left(), rect.top(), rect.right(), rect.bottom())
def get_result(X):
with graph.as_default():
result = model.predict(X)
return result
def main():
print("[INFO] sampling frames...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(
'model/shape_predictor_5_face_landmarks.dat')
time.sleep(2.0)
stream = WebcamVideoStream(args['src']).start()
fps = FPS().start()
start = time.time()
mot_tracker = Sort()
grabbed, frame = stream.read()
while grabbed:
frame = cv2.resize(frame, (1280, 720))
if fps._numFrames % 3 == 0:
rects = detector(frame, 0)
dets = np.array([get_pos_from_rect(rect) for rect in rects])
ages = np.empty((len(dets)))
genders = np.empty((len(dets)))
if len(rects) > 0:
shapes = dlib.full_object_detections()
for rect in rects:
shapes.append(predictor(frame, rect))
faces = dlib.get_face_chips(frame, shapes, size=96, padding=0.4)
faces = np.array(faces)
faces = model.prep_image(faces)
result = get_result(faces)
genders, ages = model.decode_prediction(result)
mot_tracker.update(dets, genders, ages)
for tracker in mot_tracker.trackers:
(left, top, right, bottom) = convert_x_to_bbox(
tracker.kf.x[:4, :]).astype('int').flatten()
cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 2)
age = tracker.smooth_age()
gender = 'M' if tracker.smooth_gender() == 1 else 'F'
cv2.putText(frame, "id: {} {} {}".format(tracker.id, gender, age),
(left - 10, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)
cv2.putText(frame, "{:.1f} FPS".format(fps.fps()), (1100, 50),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
cv2.namedWindow("Frame", cv2.WINDOW_NORMAL)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
fps.update()
grabbed, frame = stream.read()
fps.stop()
stream.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
print('[INFO] Load model')
model = AgenderNetMobileNetV2()
print('[INFO] Load weight')
model.load_weights(
'model/weight/mobilenetv2/model.10-3.8290-0.8965-6.9498.h5')
graph = tf.get_default_graph()
main()