-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCov_Model12.stan
55 lines (41 loc) · 1.24 KB
/
Cov_Model12.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
data {
int<lower=0> N;
vector[N] Ym;
vector<lower=0>[N] Ysd;
vector<lower=0>[N] BlackRatio;
vector<lower=0>[N] Pop;
int MissCumSumWhiteAssault[N];
int NonMissWhiteAssault[N];
int NmissWhiteAssault;
vector[N] WhiteAssault;
real MaxWhiteAssault;
int MissCumSumBlackAssault[N];
int NonMissBlackAssault[N];
int NmissBlackAssault;
vector[N] BlackAssault;
real MaxBlackAssault;
vector[N] Ones;
}
parameters {
vector[5] Theta;
vector[N] log_Y;
real<lower=0> Sigma;
real<lower=0,upper=MaxWhiteAssault> iWhiteAssault[NmissWhiteAssault];
real<lower=0,upper=MaxBlackAssault> iBlackAssault[NmissBlackAssault];
}
transformed parameters{
vector<lower=0>[N] DataWhiteAssault;
vector<lower=0>[N] DataBlackAssault;
for(t in 1:N){
DataWhiteAssault[t] = if_else(NonMissWhiteAssault[t], WhiteAssault[t], iWhiteAssault[MissCumSumWhiteAssault[t]]);
DataBlackAssault[t] = if_else(NonMissBlackAssault[t], BlackAssault[t], iBlackAssault[MissCumSumBlackAssault[t]]);
}
}
model {
vector[N] Mu;
log_Y ~ normal(Ym,Ysd);
Theta ~ cauchy(0,5);
Sigma ~ exponential(1);
Mu = ( Theta[1] + Theta[2]*log(Pop) + Theta[3]*log(BlackRatio) + Theta[4]*log(DataWhiteAssault) + Theta[5]*log(DataBlackAssault) );
log_Y ~ normal(Mu,Sigma);
}