An Efficient Unfolding Network with Disentangled Spatial-Spectral Representation for Hyperspectral Image Super-Resolution
Pytorch implementation of EUNet [Paper]
- Python 3.9
- Pytorch 1.12.1
To train EUNet, run the following commands. You may need to change the dir_data
, dataset_name
, scale
, n_colors
, is_blur
, learning_rate
, etc. in the option.py file for different settings.
# Bicubic downsampling
python main.py --scale 2 --dir_data hdata/data/ --dataset_name Pavia --n_colors 102
# Gaussian downsampling
python main.py --scale 2 --dir_data hdata/data/ --dataset_name Pavia --n_colors 102 --is_blur True --learning_rate 1e-3
For your convience, we provide the testset of Pavia Centre in /hdata/data/
and the pretrained 2X model in /hsr/model/
.
python main_test.py --scale 2 --dir_data hdata/data/ --dataset_name Pavia --n_colors 102 --model_path hsr/model/G.pth
Please cite our work in your publications if it helps your research.
@article{liu2023efficient,
title={An Efficient Unfolding Network with Disentangled Spatial-Spectral Representation for Hyperspectral Image Super-Resolution},
author={Liu, Denghong and Li, Jie and Yuan, Qiangqiang and Zheng, Li and He, Jiang and Zhao, Shuheng and Xiao, Yi},
journal={Information Fusion},
year={2023},
publisher={Elsevier},
doi={10.1016/j.inffus.2023.01.018}
}