-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathxnmt_model_shell.py
51 lines (36 loc) · 1.47 KB
/
xnmt_model_shell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from xnmt_model import Seq2SeqRunner
import os
import shutil
import zipfile
import sys
"""
Seq2Seq Params:
vocab_size=4000 --> vocab size for embeddings
model_type='unigram' --> unigram, bpe
min_freq=2 --> min freq to include vocab token in embedding
layers=1 --> num of layers in lstm
layer_dim=128 --> dimension
alpha=0.001 --> learning rate
epochs=1 --> epochs
src_embedding='SimpleWordEmbedding' --> if not set uses simpleword embedding by xnmt, can use a pre-trained embedding if replaced with file name.vec
dataset = 'annot' --> dataset type see options below
trg_embedding = None --> target embedding if using a pre-trained embedding (pre-trained embedding of snippets)
parent_model = None --> parent model if using transfer learning, include directory and file name.mod of parent model (def: saved_models/ conala_annot_best.mod)
custom_emb_size = 100 --> custom embedding size if using a pre-trained embedding
dataset options:
encoder
decoder
"""
#Add your options here and update the loop in Launch.sh
dataset = str(sys.argv[1])
xnmt_options = [
Seq2SeqRunner(model_type='bpe',epochs= 200, layer_dim= 512, alpha= 0.001,min_freq= 1,dataset = dataset, vocab_size = 20000)
]
xnmt = xnmt_options[0]
xnmt_select = 0
if xnmt_select < len(xnmt_options):
print("Setting XNMT Seq2Seq Options")
xnmt = xnmt_options[xnmt_select]
else:
print("Failed to set XNMT Options...., using default")
xnmt.run()