-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathea_bo.py
109 lines (99 loc) · 3.13 KB
/
ea_bo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from datetime import datetime
import numpy as np
from gym.wrappers import RecordVideo, RescaleAction, TimeLimit
from backend import EADOOCSBackend
from bayesopt import BayesianOptimizationAgent
from ea_optimize import (
ARESEAeLog,
BaseCallback,
OptimizeFunctionCallback,
TQDMWrapper,
setup_callback,
)
from environment import EATransverseTuning
from utils import RecordEpisode
def optimize(
target_mu_x,
target_sigma_x,
target_mu_y,
target_sigma_y,
target_mu_x_threshold=3.3198e-6,
target_mu_y_threshold=3.3198e-6,
target_sigma_x_threshold=3.3198e-6,
target_sigma_y_threshold=3.3198e-6,
max_steps=100,
model_name="BO",
logbook=False,
data_log_dir=None,
progress_bar=False,
callback=BaseCallback(),
stepsize=0.1, # comparable to RL env
acquisition="EI",
init_samples=5,
filter_action=None,
rescale_action=(-3, 3), # Yes 3 is the value we chose
magnet_init_values=np.array([10, -10, 0, 10, 0]),
set_to_best=True, # set back to best found setting after opt.
mean_module=None,
):
callback = setup_callback(callback)
# Create the environment
env = EATransverseTuning(
backend=EADOOCSBackend(),
action_mode="direct",
magnet_init_mode="constant",
magnet_init_values=magnet_init_values,
reward_mode="feedback",
target_beam_mode="constant",
target_beam_values=np.array(
[target_mu_x, target_sigma_x, target_mu_y, target_sigma_y]
),
target_mu_x_threshold=target_mu_x_threshold,
target_mu_y_threshold=target_mu_y_threshold,
target_sigma_x_threshold=target_sigma_x_threshold,
target_sigma_y_threshold=target_sigma_y_threshold,
threshold_hold=1,
unidirectional_quads=True,
w_beam=1.0,
w_mu_x=1.0,
w_mu_y=1.0,
w_on_screen=10.0,
w_sigma_x=1.0,
w_sigma_y=1.0,
logarithmic_beam_distance=True,
normalize_beam_distance=False,
)
if max_steps is not None:
env = TimeLimit(env, max_steps)
if progress_bar:
env = TQDMWrapper(env)
if callback is not None:
env = OptimizeFunctionCallback(env, callback)
if data_log_dir is not None:
env = RecordEpisode(env, save_dir=data_log_dir)
if logbook:
env = ARESEAeLog(env, model_name=model_name)
if rescale_action is not None:
env = RescaleAction(env, rescale_action[0], rescale_action[1])
env = RecordVideo(env, video_folder=f"recordings_real/{datetime.now():%Y%m%d%H%M}")
model = BayesianOptimizationAgent(
env=env,
filter_action=filter_action,
stepsize=stepsize,
init_samples=init_samples,
acquisition=acquisition,
mean_module=mean_module,
)
callback.env = env
# Actual optimisation
observation = env.reset()
reward = None
done = False
while not done:
action = model.predict(observation, reward)
observation, reward, done, info = env.step(action)
# Set back to best
if set_to_best:
action = model.X[model.Y.argmax()].detach().numpy()
env.step(action)
env.close()