-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodules.py
186 lines (135 loc) · 7.06 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import tensorflow as tf
import sys, os
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'utils'))
from tf_utils import convolution, upconvolution
from warping_utils import nearest_warp_1d, nearest_warp_2d, bilinear_warp_1d, bilinear_warp_2d
# Cost volume layer ----------------------------
class CostVolumeLayer(object):
def __init__(self, search_range=4, name='cost_volume'):
self.window = search_range
self.name = name
def __call__(self, x, warped, dim='2d'):
assert dim in ['1d', '2d']
total = []
keys = []
if dim == '1d':
row_shifted = warped
for i in range(2 * self.window + 1):
if i != 0:
row_shifted = tf.pad(row_shifted, [[0, 0], [0, 0], [1, 0], [0, 0]])
row_shifted = tf.keras.layers.Cropping2D([[0, 0], [0, 1]])(row_shifted)
total.append(tf.reduce_mean(row_shifted * x, axis=-1))
stacked = tf.stack(total, axis=3)
return stacked / (2 * self.window + 1)
else:
row_shifted = [warped]
for i in range(self.window+1):
if i != 0:
row_shifted = [tf.pad(row_shifted[0], [[0, 0], [0, 1], [0, 0], [0, 0]]),
tf.pad(row_shifted[1], [[0, 0], [1, 0], [0, 0], [0, 0]])]
row_shifted = [tf.keras.layers.Cropping2D([[1, 0], [0, 0]])(row_shifted[0]),
tf.keras.layers.Cropping2D([[0, 1], [0, 0]])(row_shifted[1])]
for side in range(len(row_shifted)):
total.append(tf.reduce_mean(row_shifted[side] * x, axis=-1))
keys.append([i * (-1) ** side, 0])
col_previous = [row_shifted[side], row_shifted[side]]
for j in range(1, self.window+1):
col_shifted = [tf.pad(col_previous[0], [[0, 0], [0, 0], [0, 1], [0, 0]]),
tf.pad(col_previous[1], [[0, 0], [0, 0], [1, 0], [0, 0]])]
col_shifted = [tf.keras.layers.Cropping2D([[0, 0], [1, 0]])(col_shifted[0]),
tf.keras.layers.Cropping2D([[0, 0], [0, 1]])(col_shifted[1])]
for col_side in range(len(col_shifted)):
total.append(tf.reduce_mean(col_shifted[col_side] * x, axis=-1))
keys.append([i * (-1) ** side, j * (-1) ** col_side])
col_previous = col_shifted
if i == 0:
row_shifted *= 2
total = [t for t, _ in sorted(zip(total, keys), key=lambda pair: pair[1])]
stacked = tf.stack(total, axis=3)
return stacked / ((2*self.window+1)**2)
class WarpingLayer(object):
def __init__(self, name='warping_layer'):
self.name = name
def __call__(self, x, displacement, type='bilinear', dim='2d'):
assert type in ['nearest', 'bilinear']
assert dim in ['1d', '2d']
if type == 'nearest':
if dim == '1d':
return nearest_warp_1d(x, displacement)
else:
return nearest_warp_2d(x, displacement)
else:
if dim == '1d':
return bilinear_warp_1d(x, displacement)
else:
return bilinear_warp_2d(x, displacement)
class OcclusionEstimator(object):
def __init__(self, num, reg_constant, is_output=False):
self.name = 'occlusion_estimator_network_' + num
self.reg_constant = reg_constant
self.is_output = is_output
def __call__(self, inp):
conv1 = convolution(inp, 128, '1', self.reg_constant)
conv2 = convolution(conv1, 96, '2', self.reg_constant)
conv3 = convolution(conv2, 64, '3', self.reg_constant)
conv4 = convolution(conv3, 32, '4', self.reg_constant)
features = convolution(conv4, 16, '_feat', self.reg_constant)
occ_mask = convolution(features, 1, '_occ_mask', self.reg_constant, activation='sigmoid')
if self.is_output:
return occ_mask
else:
features_up = upconvolution(features, 1, '_up_feat', self.reg_constant, activation='sigmoid')
occ_mask_up = upconvolution(occ_mask, 1, '_up_occ_mask', self.reg_constant, activation='sigmoid')
return occ_mask, features_up, occ_mask_up
# Scene flow estimator network
class SceneFlowEstimator(object):
def __init__(self, num, reg_constant, dense=False, is_output=False):
self.name = 'scene_flow_estimator_' + num
self.reg_constant = reg_constant
self.dense = dense
self.is_output = is_output
def __call__(self, concat):
if self.dense:
activation = 'leaky_relu'
for i, filters in zip(['1', '2', '3', '4', '_f', '_w'],
[128, 128, 96, 64, 32, 4]):
if i == '_w':
activation = None
conv = convolution(concat, filters, i, self.reg_constant, activation=activation)
if i != '_w':
concat = tf.concat([conv, concat], axis=-1)
if self.is_output:
return concat, conv
else:
flow_up = upconvolution(conv, 4, '_up_flow', self.reg_constant, activation=None)
feature_up = upconvolution(concat, 4, '_up_feature', self.reg_constant, activation=None)
return conv, flow_up, feature_up
else:
conv1 = convolution(concat, 128, '1', self.reg_constant)
conv2 = convolution(conv1, 128, '2', self.reg_constant)
conv3 = convolution(conv2, 96, '3', self.reg_constant)
conv4 = convolution(conv3, 64, '4', self.reg_constant)
f_lev = convolution(conv4, 32, '_f', self.reg_constant)
w_lev = convolution(f_lev, 4, '_w', self.reg_constant, activation=None)
if self.is_output:
return f_lev, w_lev
else:
flow_up = upconvolution(w_lev, 4, '_up_flow', self.reg_constant, activation=None)
feature_up = upconvolution(f_lev, 4, '_up_feature', self.reg_constant, activation=None)
return w_lev, flow_up, feature_up
# Context network for scene flow refinement
class ContextNetwork(object):
def __init__(self, reg_constant, name='context_network'):
self.name = name
self.reg_constant = reg_constant
def __call__(self, inp):
conv1 = convolution(inp, 128, '1', self.reg_constant, dilation=1)
conv2 = convolution(conv1, 128, '2', self.reg_constant, dilation=2)
conv3 = convolution(conv2, 128, '3', self.reg_constant, dilation=4)
conv4 = convolution(conv3, 96, '4', self.reg_constant, dilation=8)
conv5 = convolution(conv4, 64, '5', self.reg_constant, dilation=16)
conv6 = convolution(conv5, 32, '6', self.reg_constant, dilation=1)
conv7 = convolution(conv6, 4, '7', self.reg_constant, dilation=1, activation=None)
return conv7