-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
77 lines (71 loc) · 3.1 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from fitellipsoid import preprocessing, ellipsoid, util
import numpy as np
import os
## Input our parameters for size/shape distribution of each phases
mu = [0.50, 0.91, -0.3, 0.81]
sigma = [0.75, 0.57, 0.79, 0.80]
alpha = [3.82, 3.54, 3.72, 3.08]
beta = [2.99, 2.85, 3.24, 3.13]
fraction = [0.09, 0.08, 0.23, 0.45]
fraction = fraction/np.sum(fraction) # Normalize the fraction
## RVE constants, including dimensions and resolution
dim = 64
res = 1
## Automatically get the number of RVEs for evaluation
n = len([name for name in os.listdir('data') if os.path.isdir(os.path.join('data', name))])
## Function to automatically calculate the difference between the RVE and the experimental data
def RVE_difference(d, a, frac):
"""
Evaluate the difference between the RVE and the experimental data using the Hellinger distance.
Input:
d : size dictionary of the RVE
a : shape dictionary of the RVE
frac : fraction array of the RVE
Output:
H_d: total Hellinger distance of the size distribution
H_a: total Hellinger distance of the shape distribution
H_f: Hellinger distance of the fraction distribution
E : the differene between the RVE and the experimental data
"""
## Initialize the difference
H_d = 0
H_a = 0
H_f = 0
E = 0
## Loop through each phase
for i in d:
## Calculate the Hellinger distance of the size distribution
mu_, sigma_ = util.fit_lognorm(d[i])
H_d += util.hellinger_lognorm(mu_, mu[i-1], sigma_, sigma[i-1])/4
## Calculate the Hellinger distance of the shape distribution
ap_, be_ = util.fit_beta(a[i])
H_a += util.hellinger_beta(ap_, alpha[i-1], be_, beta[i-1])/4
## Calculate the Hellinger distance of the fraction distribution
H_f = util.hellinger(fraction, frac)
## Calculate the difference
E = (H_d + H_a + H_f)/3
## Return the difference
return H_d, H_a, H_f, E
if __name__ == '__main__':
## Loop through each RVE
min_error = 1e10 # Initialize the minimum error
best_RVE = 0 # Initialize the best RVE
print('Evaluating the RVEs...')
for i in range(1, n + 1):
## Read the data
data_path = f'data/{i}/QP_FFT_data.txt'
RVE, vertices, phases = preprocessing.preprocess(data_path)
## Fit the RVE and calculate phase fraction
d, a = ellipsoid.fitRVE(data_path, res)
util.mkdr(i)
util.graph_plot(d, a, i, mu, sigma, alpha, beta)
frac = util.phase_fraction(RVE)
## Calculate the difference between the RVE and the experimental data
H_d, H_a, H_f, E = RVE_difference(d, a, frac)
print(f'RVE #{i} has size error of {H_d}, shape error of {H_a}, fraction error of {H_f}, and average error is {E}.')
## Update the minimum error and the best RVE
if E < min_error:
min_error = E
best_RVE = i
## Print the best RVE
print(f'The best RVE is RVE #{best_RVE} with an error of {min_error}.')