-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_onnx_cpu_inference.py
64 lines (49 loc) · 1.95 KB
/
03_onnx_cpu_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import time
from urllib.request import urlopen
import numpy as np
import onnxruntime as ort
import torch
from PIL import Image
from imagenet_classes import IMAGENET2012_CLASSES
img = Image.open(
urlopen(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png"
)
)
def transforms_numpy(image: Image.Image):
image = image.convert("RGB")
image = image.resize((448, 448), Image.BICUBIC)
img_numpy = np.array(image).astype(np.float32) / 255.0
img_numpy = img_numpy.transpose(2, 0, 1)
mean = np.array([0.4815, 0.4578, 0.4082]).reshape(-1, 1, 1)
std = np.array([0.2686, 0.2613, 0.2758]).reshape(-1, 1, 1)
img_numpy = (img_numpy - mean) / std
img_numpy = np.expand_dims(img_numpy, axis=0)
img_numpy = img_numpy.astype(np.float32)
return img_numpy
# Create ONNX Runtime session with CPU provider
onnx_filename = "eva02_large_patch14_448.onnx"
session = ort.InferenceSession(onnx_filename, providers=["CPUExecutionProvider"])
# Get input and output names
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
# Run inference
output = session.run([output_name], {input_name: transforms_numpy(img)})[0]
# Check the output
output = torch.from_numpy(output)
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
im_classes = list(IMAGENET2012_CLASSES.values())
class_names = [im_classes[i] for i in top5_class_indices[0]]
# Print class names and probabilities
for name, prob in zip(class_names, top5_probabilities[0]):
print(f"{name}: {prob:.2f}%")
# Run benchmark
num_images = 10
start = time.perf_counter()
for i in range(num_images):
output = session.run([output_name], {input_name: transforms_numpy(img)})[0]
end = time.perf_counter()
time_taken = end - start
ms_per_image = time_taken / num_images * 1000
fps = num_images / time_taken
print(f"Onnxruntime CPU: {ms_per_image:.3f} ms per image, FPS: {fps:.2f}")